%!PS-Adobe-2.0 %%Creator: dvipsk 5.58f Copyright 1986, 1994 Radical Eye Software %%Title: preprint.dvi %%Pages: 11 %%PageOrder: Ascend %%BoundingBox: 0 0 596 842 %%DocumentPaperSizes: a4 %%EndComments %DVIPSCommandLine: dvips preprint -o preprint.ps %DVIPSParameters: dpi=600, compressed, comments removed %DVIPSSource: TeX output 1997.10.17:1502 %%BeginProcSet: texc.pro /TeXDict 250 dict def TeXDict begin /N{def}def /B{bind def}N /S{exch}N /X{S N}B /TR{translate}N /isls false N /vsize 11 72 mul N /hsize 8.5 72 mul N /landplus90{false}def /@rigin{isls{[0 landplus90{1 -1}{-1 1} ifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[matrix currentmatrix{dup dup round sub abs 0.00001 lt{round}if} forall round exch round exch]setmatrix}N /@landscape{/isls true N}B /@manualfeed{statusdict /manualfeed true put}B /@copies{/#copies X}B /FMat[1 0 0 -1 0 0]N /FBB[0 0 0 0]N /nn 0 N /IE 0 N /ctr 0 N /df-tail{ /nn 8 dict N nn begin /FontType 3 N /FontMatrix fntrx N /FontBBox FBB N string /base X array /BitMaps X /BuildChar{CharBuilder}N /Encoding IE N end dup{/foo setfont}2 array copy cvx N load 0 nn put /ctr 0 N[}B /df{ /sf 1 N /fntrx FMat N df-tail}B /dfs{div /sf X /fntrx[sf 0 0 sf neg 0 0] N df-tail}B /E{pop nn dup definefont setfont}B /ch-width{ch-data dup length 5 sub get}B /ch-height{ch-data dup length 4 sub get}B /ch-xoff{ 128 ch-data dup length 3 sub get sub}B /ch-yoff{ch-data dup length 2 sub get 127 sub}B /ch-dx{ch-data dup length 1 sub get}B /ch-image{ch-data dup type /stringtype ne{ctr get /ctr ctr 1 add N}if}B /id 0 N /rw 0 N /rc 0 N /gp 0 N /cp 0 N /G 0 N /sf 0 N /CharBuilder{save 3 1 roll S dup /base get 2 index get S /BitMaps get S get /ch-data X pop /ctr 0 N ch-dx 0 ch-xoff ch-yoff ch-height sub ch-xoff ch-width add ch-yoff setcachedevice ch-width ch-height true[1 0 0 -1 -.1 ch-xoff sub ch-yoff .1 sub]/id ch-image N /rw ch-width 7 add 8 idiv string N /rc 0 N /gp 0 N /cp 0 N{rc 0 ne{rc 1 sub /rc X rw}{G}ifelse}imagemask restore}B /G{{id gp get /gp gp 1 add N dup 18 mod S 18 idiv pl S get exec}loop}B /adv{cp add /cp X}B /chg{rw cp id gp 4 index getinterval putinterval dup gp add /gp X adv}B /nd{/cp 0 N rw exit}B /lsh{rw cp 2 copy get dup 0 eq{pop 1}{ dup 255 eq{pop 254}{dup dup add 255 and S 1 and or}ifelse}ifelse put 1 adv}B /rsh{rw cp 2 copy get dup 0 eq{pop 128}{dup 255 eq{pop 127}{dup 2 idiv S 128 and or}ifelse}ifelse put 1 adv}B /clr{rw cp 2 index string putinterval adv}B /set{rw cp fillstr 0 4 index getinterval putinterval adv}B /fillstr 18 string 0 1 17{2 copy 255 put pop}for N /pl[{adv 1 chg} {adv 1 chg nd}{1 add chg}{1 add chg nd}{adv lsh}{adv lsh nd}{adv rsh}{ adv rsh nd}{1 add adv}{/rc X nd}{1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]dup{bind pop}forall N /D{/cc X dup type /stringtype ne{] }if nn /base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{dup dup length 1 sub dup 2 index S get sf div put}if put /ctr ctr 1 add N}B /I{ cc 1 add D}B /bop{userdict /bop-hook known{bop-hook}if /SI save N @rigin 0 0 moveto /V matrix currentmatrix dup 1 get dup mul exch 0 get dup mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N /eop{SI restore userdict /eop-hook known{eop-hook}if showpage}N /@start{userdict /start-hook known{start-hook}if pop /VResolution X /Resolution X 1000 div /DVImag X /IE 256 array N 0 1 255{IE S 1 string dup 0 3 index put cvn put}for 65781.76 div /vsize X 65781.76 div /hsize X}N /p{show}N /RMat[1 0 0 -1 0 0]N /BDot 260 string N /rulex 0 N /ruley 0 N /v{/ruley X /rulex X V}B /V {}B /RV statusdict begin /product where{pop product dup length 7 ge{0 7 getinterval dup(Display)eq exch 0 4 getinterval(NeXT)eq or}{pop false} ifelse}{false}ifelse end{{gsave TR -.1 .1 TR 1 1 scale rulex ruley false RMat{BDot}imagemask grestore}}{{gsave TR -.1 .1 TR rulex ruley scale 1 1 false RMat{BDot}imagemask grestore}}ifelse B /QV{gsave newpath transform round exch round exch itransform moveto rulex 0 rlineto 0 ruley neg rlineto rulex neg 0 rlineto fill grestore}B /a{moveto}B /delta 0 N /tail {dup /delta X 0 rmoveto}B /M{S p delta add tail}B /b{S p tail}B /c{-4 M} B /d{-3 M}B /e{-2 M}B /f{-1 M}B /g{0 M}B /h{1 M}B /i{2 M}B /j{3 M}B /k{ 4 M}B /w{0 rmoveto}B /l{p -4 w}B /m{p -3 w}B /n{p -2 w}B /o{p -1 w}B /q{ p 1 w}B /r{p 2 w}B /s{p 3 w}B /t{p 4 w}B /x{0 S rmoveto}B /y{3 2 roll p a}B /bos{/SS save N}B /eos{SS restore}B end %%EndProcSet %%BeginProcSet: special.pro TeXDict begin /SDict 200 dict N SDict begin /@SpecialDefaults{/hs 612 N /vs 792 N /ho 0 N /vo 0 N /hsc 1 N /vsc 1 N /ang 0 N /CLIP 0 N /rwiSeen false N /rhiSeen false N /letter{}N /note{}N /a4{}N /legal{}N}B /@scaleunit 100 N /@hscale{@scaleunit div /hsc X}B /@vscale{@scaleunit div /vsc X}B /@hsize{/hs X /CLIP 1 N}B /@vsize{/vs X /CLIP 1 N}B /@clip{ /CLIP 2 N}B /@hoffset{/ho X}B /@voffset{/vo X}B /@angle{/ang X}B /@rwi{ 10 div /rwi X /rwiSeen true N}B /@rhi{10 div /rhi X /rhiSeen true N}B /@llx{/llx X}B /@lly{/lly X}B /@urx{/urx X}B /@ury{/ury X}B /magscale true def end /@MacSetUp{userdict /md known{userdict /md get type /dicttype eq{userdict begin md length 10 add md maxlength ge{/md md dup length 20 add dict copy def}if end md begin /letter{}N /note{}N /legal{} N /od{txpose 1 0 mtx defaultmatrix dtransform S atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{itransform lineto} }{6 -2 roll transform 6 -2 roll transform 6 -2 roll transform{ itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll curveto}}{{ closepath}}pathforall newpath counttomark array astore /gc xdf pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}if}N /txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1 -1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop 90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr 2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4 -1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S TR}if}N /cp {pop pop showpage pm restore}N end}if}if}N /normalscale{Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale}if 0 setgray} N /psfts{S 65781.76 div N}N /startTexFig{/psf$SavedState save N userdict maxlength dict begin /magscale true def normalscale currentpoint TR /psf$ury psfts /psf$urx psfts /psf$lly psfts /psf$llx psfts /psf$y psfts /psf$x psfts currentpoint /psf$cy X /psf$cx X /psf$sx psf$x psf$urx psf$llx sub div N /psf$sy psf$y psf$ury psf$lly sub div N psf$sx psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub TR /showpage{}N /erasepage{}N /copypage{}N /p 3 def @MacSetUp}N /doclip{ psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2 roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath moveto}N /endTexFig{end psf$SavedState restore}N /@beginspecial{SDict begin /SpecialSave save N gsave normalscale currentpoint TR @SpecialDefaults count /ocount X /dcount countdictstack N}N /@setspecial {CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR }{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury lineto closepath clip}if /showpage{}N /erasepage{}N /copypage{}N newpath }N /@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{ end}repeat grestore SpecialSave restore end}N /@defspecial{SDict begin} N /@fedspecial{end}B /li{lineto}B /rl{rlineto}B /rc{rcurveto}B /np{ /SaveX currentpoint /SaveY X N 1 setlinecap newpath}N /st{stroke SaveX SaveY moveto}N /fil{fill SaveX SaveY moveto}N /ellipse{/endangle X /startangle X /yrad X /xrad X /savematrix matrix currentmatrix N TR xrad yrad scale 0 0 1 startangle endangle arc savematrix setmatrix}N end %%EndProcSet TeXDict begin 39158280 55380996 1000 600 600 (preprint.dvi) @start /Fa 20 122 df<121FEA3F80EA7FC0EAFFE0A5EA7FC0EA3F80EA1F000B0B708A 2C>46 D<1507ED0F80151FA2153F16005D157E15FE5D14015D14035DA214075D140F5D14 1F5D143F92C7FC5C147E14FE5CA213015C13035C13075C130F5C131F5CA2133F91C8FC5B 137E13FE5B12015B12035B12075BA2120F5B121F5B123F90C9FC5A127E12FE5AA25A1278 21417BB92C>I<121FEA3F80EA7FC0EAFFE0A5EA7FC0EA3F80EA1F00C7FCAE121FEA3F80 EA7FC0EAFFE0A5EA7FC0EA3F80EA1F000B2470A32C>58 D<3801FFF0000713FE001F6D7E 15E048809038C01FF81407EC01FC381F80000006C77EC8127EA3ECFFFE131F90B5FC1203 120F48EB807E383FF800EA7FC090C7FC12FE5AA47E007F14FEEB8003383FE01F6CB612FC 6C15FE6C14BF0001EBFE1F3A003FF007FC27247CA32C>97 D100 DII104 D<1307EB1FC0A2497EA36D 5AA20107C7FC90C8FCA7387FFFC080B5FC7EA2EA0007B3A8007FB512FCB612FEA36C14FC 1F3479B32C>I107 D<387FFFE0B57EA37EEA0003B3B3A5007FB61280B712C0A36C1580 22337BB22C>I<3A7F83F007E09039CFFC1FF83AFFDFFE3FFCD87FFF13FF91B57E3A07FE 1FFC3E01FCEBF83F496C487E01F013E001E013C0A301C01380B33B7FFC3FF87FF0027F13 FFD8FFFE6D13F8D87FFC4913F0023F137F2D2481A32C>I<397FF01FE039FFF87FFC9038 F9FFFE01FB7F6CB6FC00019038F03F80ECC01F02807FEC000F5B5BA25BB3267FFFE0B5FC B500F11480A36C01E0140029247FA32C>II<397FF01FE039FFF8FFF801FB13FE90 B6FC6C158000019038F07FC09138801FE091380007F049EB03F85BED01FC491300A216FE 167EA816FE6D14FCA2ED01F86D13036DEB07F0150F9138801FE09138E07FC091B5128016 0001FB5B01F813F8EC3FC091C8FCAD387FFFE0B57EA36C5B27367FA32C>I114 D<131E133FA9007FB6FC B71280A36C1500D8003FC8FCB1ED03C0ED07E0A5EC800F011FEB1FC0ECE07F6DB5128016 0001035B6D13F89038003FE0232E7EAD2C>116 D<3A7FF003FF80486C487FA3007F7F00 01EB000FB3A3151FA2153F6D137F3900FE03FF90B7FC6D15807F6D13CF902603FE071300 29247FA32C>I119 D<3A7FFF01FFFCB5008113FE148314816C010113FC3A03E0000F806C7E151F6D14001200 5D6D133E137C017E137E013E137CA2013F13FC6D5BA2EB0F815DA2EB07C1ECC3E0A2EB03 E3ECE7C0130114F75DEB00FFA292C7FC80A2143EA2147E147CA214FC5CA2EA0C01003F5B EA7F83EB87E0EA7E0F495A387FFF806C90C8FC6C5A6C5AEA07E027367EA32C>121 D E /Fb 11 123 df100 D<147F903803FFC090380FC1E090383F00F0017E13785B 485A485A485A120F4913F8001F14F0383F8001EC07E0EC1F80397F81FF00EBFFF891C7FC 90C8FC5A5AA55AA21530007C14381578007E14F0003EEB01E0EC03C06CEB0F806CEB3E00 380781F83803FFE0C690C7FC1D2677A426>I103 D105 D110 D<147F903803FFC090380FC1F090 381F00F8017E137C5B4848137E4848133E0007143F5B120F485AA2485A157F127F90C7FC A215FF5A4814FEA2140115FC5AEC03F8A2EC07F015E0140F007C14C0007EEB1F80003EEB 3F00147E6C13F8380F83F03803FFC0C648C7FC202677A42A>I<3903C003F0390FF01FFC 391E783C0F381C7C703A3C3EE03F8038383FC0EB7F800078150000701300151CD8F07E90 C7FCEAE0FE5BA2120012015BA312035BA312075BA3120F5BA3121F5BA3123F90C9FC120E 212679A423>114 D<14FE903807FF8090380F83C090383E00E04913F00178137001F813 F00001130313F0A215E00003EB01C06DC7FC7FEBFFC06C13F814FE6C7F6D13807F010F13 C01300143F141F140F123E127E00FE1480A348EB1F0012E06C133E00705B6C5B381E03E0 6CB45AD801FEC7FC1C267AA422>II<13F0D803FCEB01C0D8071EEB03E0D80E1F1307121C123C0038140F4914C012 70A249131FD8F07E148012E013FEC648133F160012015B5D0003147E5BA215FE00075C5B A214015DA314035D14070003130FEBF01F3901F87FE038007FF7EB1FC7EB000F5DA2141F 003F5C48133F92C7FC147E147C007E13FC387001F8EB03E06C485A383C1F80D80FFEC8FC EA03F0233679A428>121 D<903903C0038090380FF007D91FF81300496C5A017F130E90 38FFFE1E9038F83FFC3901F007F849C65A495B1401C7485A4A5A4AC7FC141E5C5C5C495A 495A495A49C8FC131E5B49131C5B4848133C48481338491378000714F8390FF801F0391F FF07E0383E1FFFD83C0F5B00785CD8700790C7FC38F003FC38E000F021267BA422>I E /Fc 1 60 df<127012F812FCA2127C120CA31218A2123012601240060D7A8413>59 D E /Fd 1 118 df<3AFFF007FF80A3000FEB007FB015FFA25C3807F8076CB5EA7FF86C 13FC38003FF0251A7D992A>117 D E /Fe 5 53 df<13FF000313C0380781E0380F00F0 001E137848133CA248131EA400F8131FAD0078131EA2007C133E003C133CA26C13786C13 F0380781E03803FFC0C6130018227DA01E>48 D<13E01201120712FF12F91201B3A7487E B512C0A212217AA01E>II<13FF000313C038 0F03E0381C00F014F8003E13FC147CA2001E13FC120CC712F8A2EB01F0EB03E0EB0FC038 01FF00A2380003E0EB00F01478147C143E143F1230127812FCA2143E48137E0060137C00 3813F8381E03F0380FFFC00001130018227DA01E>I<14E01301A213031307A2130D131D 13391331136113E113C1EA01811203EA07011206120C121C12181230127012E0B6FCA238 0001E0A6EB03F0EB3FFFA218227DA11E>I E /Ff 10 116 df<140C141C143C1438A214 78147014F014E0130114C0A21303148013071400A25B130E131E131CA2133C1338137813 7013F05BA212015B12035BA2120790C7FC5A120EA2121E121C123C123812781270A212F0 5AA216317CA420>61 D<90B6FC16E0903907C003F0ED00F8494813FC167C167EA249C712 7C16FCA2ED01F8013EEB03F0ED07E0ED1F8090393FFFFE005B90397C003F80ED07C0ED03 E04914F01501A216F8484814F01503A2ED07E04848EB0FC0ED1F80ED3F00000714FEB612 F815C027227CA12E>66 D<90B612FEA2903907C0007E161E4948130EA2160CA249C7FC15 30A3013EEB6000A2EC01E0EB3FFF495BEB7C01A301F85B1630A291C71260485A16C0A215 014848EB03801507ED0F000007147FB7FC5D27227CA12D>69 D<90B612FCA2903807C000 163C4948131CA2160CA249C7FCA21530A2013EEB6000A215E0140190387FFFC0A2EB7C03 140101F85BA44848C8FCA4485AA31207B57EA226227CA127>I<90B512FEEDFFC0903907 C007F0ED01F890380F800016FC167CA249C712FCA316F8013E1301ED03F016E0ED0FC049 EB3F0090387FFFFC15E0017CC8FC5BA4485AA4485AA31207EAFFFEA226227CA127>80 D99 D<1418143C147CA214381400A7EB0780EB1FE01338EB60F013C0A2EA0180A2380001E0A4 EB03C0A4EB0780A4EB0F00A4131EA21238EA783CEAF8381378EA70F0EA7FC0001FC7FC16 2D81A119>106 D<000F13FC381FC3FF3931C707803861EC0301F813C0EAC1F0A213E039 03C00780A3EC0F00EA0780A2EC1E041506D80F00130C143C15181538001EEB1C70EC1FE0 000CEB07801F177D9526>110 DI115 D E /Fg 8 115 df<007FB712FCB812FEA26C16FC 2F047A943C>0 D25 D<187018F0A2841878A2187C183C183E84A2727E727E85727E727E727E197F007FBA12C0 BB12F0A26C19C0CCEA7F0019FC4E5A4E5A4E5A614E5A4EC7FCA2183E183C187C1878A218 F860A2187044287CA64D>33 D49 D104 D<126012F07EA21278127CA27EA2121E121FA26C7EA212077FA26C7EA212017FA26C7EA2 1378137CA27FA2131E131FA2EB0F80A2130714C0A41480130FA2EB1F00A2131E133EA25B A2137813F8A2485AA25B1203A2485AA25B120FA248C7FCA2121E123EA25AA2127812F8A2 5A1260124A7CB71E>I<126012F0B3B3B3B31260044B78B715>I114 D E /Fh 17 115 df<007FB81280B912C0A26C17803204799641>0 D<121C127FEAFF80A5EA7F00121C0909799917>I<0060150600F8150F6C151F007E153F 6C157E6C6C14FC6C6CEB01F86C6CEB03F06C6CEB07E06C6CEB0FC06C6CEB1F80017EEB3F 006D137E6D6C5A90380FC1F8903807E3F0903803F7E06DB45A6D5B6EC7FCA24A7E497F90 3803F7E0903807E3F090380FC1F890381F80FC90383F007E017E7F49EB1F804848EB0FC0 4848EB07E04848EB03F04848EB01F84848EB00FC48C8127E007E153F48151F48150F0060 1506282874A841>I<007FB812F8B912FCA26C17F8CCFCAE007FB812F8B912FCA26C17F8 CCFCAE007FB812F8B912FCA26C17F836287BA841>17 D20 D<126012F812FEEA7F80 EA3FE0EA0FF8EA03FEC66C7EEB3FE0EB0FF8EB03FE903800FF80EC3FE0EC0FF8EC03FE91 3800FF80ED3FE0ED0FF8ED03FE923800FF80EE3FE0EE0FF8EE03FE933800FF80EF3FC017 1FEF7F80933801FF00EE07FCEE1FF0EE7FC04B48C7FCED07FCED1FF0ED7FC04A48C8FCEC 07FCEC1FF0EC7FC04948C9FCEB07FCEB1FF0EB7FC04848CAFCEA07FCEA1FF0EA7FC048CB FC12FC1270CCFCAE007FB81280B912C0A26C1780324479B441>I24 DI<181EA4181F84A285180785727EA2 727E727E85197E85F11F80F10FC0F107F0007FBA12FCBCFCA26C19FCCCEA07F0F10FC0F1 1F80F13F00197E61614E5A4E5AA24E5A61180F96C7FCA260181EA4482C7BAA53>33 D<1430A31478A314FCA2497EA2497E497FA2497F90381F7BE090383E79F09038FC78FCD8 01F8137ED807F0EB3F80D83FE0EB1FF0D8FF80EB07FCD8FE00130100F8EC007C00C0150C C71400B3B3AD1430264A7EB92A>I<14301478B3B3AD00C0150C00F8157C00FEEC01FCD8 FF801307D83FE0EB1FF0D807F0EB3F80D801F8EB7E00D800FC5B90383E79F090381F7BE0 6DB45A6D5BA26D90C7FC6D5AA26D5AA21478A31430A3264A7EB92A>I47 D49 D<14C0EB01E01303A214C01307A21480130FA2EB1F00A2131E133EA25B A2137813F8A2485AA25B1203A25B1207A2485AA290C7FC5AA2123EA2123C127CA2127812 F8A41278127CA2123C123EA27EA27E7FA26C7EA212037FA212017FA26C7EA21378137CA2 7FA2131E131FA2EB0F80A2130714C0A2130314E0A21301EB00C0135278BD20>104 D<126012F07EA21278127CA2123C123EA27EA27E7FA26C7EA212037FA26C7EA212007FA2 1378137CA27FA2131E131FA2EB0F80A2130714C0A2130314E0A414C01307A21480130FA2 EB1F00A2131E133EA25BA2137813F8A25B1201A2485AA25B1207A2485AA290C7FC5AA212 3EA2123C127CA2127812F8A25A126013527CBD20>I<126012F0B3B3B3B3A91260045377 BD17>I114 D E /Fi 3 118 df<49B4EB0780010FEBE00F01 3FEBF81F9039FFC07C3F0003EB803E3A07FE000F7F4848EB07FF121F497F123F497F127F A25B12FFAA6C7EA36C7E5D6C7E000F5C6C6C5B6C6C133F6CEBC0FD39007FFFF1011F13C1 0101130190C7FCAC037F13FEA42F357DA432>113 D<9038FE03F000FFEB0FFEEC3FFF91 387C7F809138F8FFC000075B6C6C5A5CA29138807F80ED3F00150C92C7FC91C8FCB3A2B5 12FEA422257EA427>I<01FFEC3FC0B5EB3FFFA4000714016C80B3A35DA25DA26C5C6E48 13E06CD9C03E13FF90387FFFFC011F13F00103138030257DA435>117 D E /Fj 10 72 df48 D<13381378EA01F8121F12FE12E01200B3AB487EB5 12F8A215267BA521>I<13FF000313E0380E03F0381800F848137C48137E00787F12FC6C EB1F80A4127CC7FC15005C143E147E147C5C495A495A5C495A010EC7FC5B5B9038700180 13E0EA0180390300030012065A001FB5FC5A485BB5FCA219267DA521>I<13FF000313E0 380F01F8381C007C0030137E003C133E007E133FA4123CC7123E147E147C5C495AEB07E0 3801FF8091C7FC380001E06D7E147C80143F801580A21238127C12FEA21500485B007813 3E00705B6C5B381F01F03807FFC0C690C7FC19277DA521>I<1438A2147814F81301A213 0313071306130C131C131813301370136013C012011380EA03005A120E120C121C5A1230 5A12E0B612E0A2C7EAF800A7497E90383FFFE0A21B277EA621>I<0018130C001F137CEB FFF85C5C1480D819FCC7FC0018C8FCA7137F3819FFE0381F81F0381E0078001C7F001813 3EC7FC80A21580A21230127C12FCA3150012F00060133E127000305B001C5B380F03E038 03FFC0C648C7FC19277DA521>II<137F3803FFE0380781F8380E007C48131E5A801278A3127C007E13 1EEA3F80EBE03C6C6C5A380FFCF03807FFC06C5BC613E0487F38079FFC380F07FEEA1E03 48C67E48133FEC1F8048130FA21407A315001278140E6C5B6C5B380F80F03803FFE0C66C C7FC19277DA521>56 D<140EA2141FA34A7EA3EC6FC0A2ECEFE014C7A290380183F0A390 380301F8A201067F1400A249137EA2011C137F01187FA24980013FB5FCA2903960000FC0 A201E080491307A248486D7EA200038115011207D81FC0497ED8FFF890383FFFE0A22B2A 7EA931>65 D<91387FC002903903FFF80690390FE01E0E90383F0007017CEB019ED801F0 EB00FE4848147E4848143E5B000F151E48C8FC48150E123EA2007E1506A2127C00FC92C7 FCA792387FFFE0127C007E02001300167E123EA2123F7E6C7E6C7EA26C7ED801F814FEEA 007C013FEB039E90390FE00F0E903903FFFC029026007FE0C7FC2B2A7DA833>71 D E /Fk 15 115 df<160F161F163E167C16F8ED01F0ED03E0ED07C0150FED1F80160015 3E157E5D4A5A5D14034A5A5D140F4A5AA24AC7FC143E147E5CA2495AA2495AA2495AA213 0F5CA2495AA2133F91C8FCA25B137E13FEA25B1201A25B1203A35B1207A35B120FA35BA2 121FA45B123FA690C9FC5AAA12FEB3AC127FAA7E7FA6121F7FA4120FA27FA312077FA312 037FA312017FA212007FA2137E137F7FA280131FA26D7EA2801307A26D7EA26D7EA26D7E A2147E143E143F6E7EA26E7E1407816E7E1401816E7E157E153E811680ED0FC01507ED03 E0ED01F0ED00F8167C163E161F160F28C66E823D>18 D<12F07E127C7E7E6C7E6C7E6C7E 7F6C7E1200137C137E7F6D7E130F806D7E1303806D7EA26D7E147C147E80A26E7EA26E7E A26E7EA2811403A26E7EA2811400A281157E157FA2811680A2151F16C0A3150F16E0A315 0716F0A31503A216F8A4150116FCA6150016FEAA167FB3AC16FEAA16FC1501A616F81503 A416F0A21507A316E0150FA316C0151FA31680153FA216005DA2157E15FE5DA214015DA2 4A5AA214075DA24A5AA24A5AA24AC7FCA2147E147C14FC495AA2495A5C1307495A5C131F 49C8FC137E137C5B1201485A5B485A485A48C9FC123E5A5A5A28C67E823D>III<161E167EED01FE1507ED0FF8ED3FE0ED7FC0ED FF80913801FE004A5A4A5A5D140F4A5A5D143F5D147F92C7FCA25C5CB3B3B3A313015CA3 495AA213075C495AA2495A495A137F49C8FC485A485AEA07F0EA1FE0485AB4C9FC12FCA2 B4FCEA3FC06C7EEA07F0EA03FC6C7E6C7E6D7E133F6D7E6D7EA26D7E801303A26D7EA380 1300B3B3B3A38080A281143F81141F816E7E1407816E7E6E7E913800FF80ED7FC0ED3FE0 ED0FF8ED07FE1501ED007E161E27C675823E>26 D<12F012FCB4FC13C0EA3FE0EA0FF86C 7E6C7EC67E6D7E6D7E131F806D7E1307801303801301A2801300B3B3B3A38080A36E7EA2 81141F6E7EA26E7E6E7E816E7E6E7EED7F80ED1FC0ED0FF0ED07F8ED01FEED007EA2ED01 FEED07F8ED0FF0ED1FC0ED7F80EDFF004A5A4A5A5D4A5A4A5AA24A5A143F5DA24AC7FCA3 5C5CB3B3B3A313015CA213035C13075C130F495A5C133F495A49C8FCEA03FE485A485AEA 3FE0B45A90C9FC12FC12F027C675823E>I34 DI40 D<12F012FCB4FC7FEA3FE06C7E6C7EEA03FC6C7E6C7E6D7E6D7E80131F6D7E8013076D7E A2801301A26D7EA46E7EB3B3B3B281143FA381141FA26E7EA21407811403816E7E140081 6F7E6F7E6F7E6F7E6F7E6F7EED00FE167FEE3FC0160FA2163FEE7F0016FEED03FC4B5A4B 5A4B5A4B5A4B5A4BC7FC5D14014A5A5D14075D140FA24A5AA2143F5DA3147F5DB3B3B3B2 4AC8FCA4495AA213035CA2495A130F5C495A133F5C495A49C9FC485A485AEA0FF8485A48 5AEAFF8090CAFC12FC12F02AF8748243>I<167F923801FFC0923803C0F0923807803892 380F007892381F01FC151E153EA2157E92387C0070170015FCA44A5AA81403A45DA41407 A94A5AAA4A5AA95DA4143FA492C8FCA7143E147EA4147C123800FE13FC5CA2495A5CEA78 03387007C0383C0F80D80FFEC9FCEA03F82E5C7C7F27>82 D90 D104 DI<1B301B78A21BF8A21BF0 A21A01A21BE0A21A03A21BC0A31A07A21B80A21A0FA21B00A262A21A1EA21A3EA21A3CA2 1A7CA21A78A21AF8A262A31901A262A21903A262A21907A262A2190FA297C7FCA261A219 1EA2193EA2193CA3197CA21978A219F8A261A21801A261A21803A261A21807A261A2180F A296C8FCA360A2181EA2183EA2183CA2187C131018781330017016F8A201F85E12011701 1203486C5EA2120D001D16031219D830FE5E12700060160712C000405FEA007F170FA295 C9FC6D7E5FA2171EA26D6C143EA2173CA2177C6D7E1778A36D6C14F8A25FA216016D7E5F A21603A26D6C5CA21607A26D6C5CA2160FA294CAFC147F5EA2161EEC3F80A2163EA2163C EC1FC0167CA21678A291380FE0F8A25EA2EC07F1A25EA215F3EC03FB5EA215FFA26E5BA4 8093CBFCA4157EA4157C153C15384DC8788353>114 D E /Fl 21 121 df<137E48B4EB0180000713C0489038E00300481406383E01F0393800700C481338 0060EB181848131CEC0C305AC75B14065DA3EC0780A292C7FCA31406A3140EA2140C141C A45CA31430A2142021267E9923>13 D<010FB5FC013F148049140048B6FC2603F07EC7FC 3807C01FEA0F80497E5A123EA2003C5B127CA30078133E12F8143C0078137C14785C6C48 5A495A381E0F80D80FFEC8FCEA03F8211A7D9826>27 D<1238127C12FE12FFA2127F123B 1203A31206A3120C121812381270122008127A8614>59 D61 D<4B7E1503150782150F151FA2153F A2156F15CF82EC0187140315071406140E140C02187FA2EC30031460A214C013011480D9 03007F91B5FC5B90380C0001A25B13380130805B01E013005B12011203000F4A7ED8FFF8 90381FFFE0A22B2A7DA932>65 D<013FB512F816FF903A01FC001FC04AEB07E0EE03F001 031401A24A14F8A2130717F04A130317E0010F1407EE0FC04AEB1F80EE7E00011F495A91 B512F0A291388001FC013FEB007E8291C7EA1F80160F4915C0A2137EA213FEEE1F805BEE 3F000001153E16FE49EB01F84B5A0003EC1FC0B7C7FC15F82D287DA732>I<013FB512FC 16FF903A01FC001FC04AEB03E0EE01F801031400177C4A80A2010781A25CA2130F18805C A2011F1600A24A5CA2133F173E91C8127E177C4915FC5F017E14015F01FE4A5AA2494A5A 4C5A00014BC7FC167C495CED03E00003EC1FC0B600FEC8FC15F031287DA736>68 D<013FB612FCA2903901FC00014AEB007C173C0103153817185CA21307A24A13C0A2010F 010113005E14C01503011F130F91B5C7FCA2EC800F013F7F15061400A249010E13E0030C 13C0017E90C7FC160101FEEC0380A249EC0700A20001150E161E495C16FC0003EC07F8B7 FC5E2E287DA731>I<013FB612F0A2903901FC00074A1301160001031560A25CA21307A2 5CED0180010F0103130093C7FC14C05D131F151EECFFFEA290383F801E150C1400A24913 1C1518137E92C8FC13FEA25BA21201A25BA21203B512F0A22C287DA72A>I<4AB4130802 0FEBE01891397F80F038903A01F8001870D903E0EB0CF0D90F80130749C71203013E15E0 5B491401485A484815C0485A120F5B001F168090C8FC4892C7FCA2127EA4127C00FC9138 7FFFE0A2923800FE00127C5EA21501007E5D123EA27E6C6C495A6C6C13076C6C130FD801 F8131CD800FEEBF06090393FFFC020D907FEC8FC2D2A7DA834>I<90383FFFF8A2D901FC C7FC5CA21303A25CA21307A25CA2130FA25CA2131FA25CA2133FA291C8FCA249141C1618 137E163801FE1430167049146016E000011401ED03C0491307ED0F800003147FB7FC1600 26287DA72E>76 D<013FB512F816FF903A01FC001FC04AEB07E0EE01F0010315F816005C A2130716015CA2010FEC03F0A24AEB07E0EE0FC0011FEC1F80EE3E0091388001FC91B512 E093C7FCD93F80C8FC91C9FCA35B137EA313FE5BA312015BA21203B512C0A22D287DA72A >80 D<91381FE0089138FFFC18903903E01E3890390780077090390E0003F04913014913 00017814E0137013F0A2000115C0A216007F7F6CB47E14F86DB47E6D13F06D7F01077F01 007F1407EC00FF153F81A3001880A20038141E12300038141C153C00781438007C5C007E 5C0077EB03C026E3E00FC7FC38C0FFFE38801FF0252A7CA829>83 D 99 D101 D<1407EC0F80141FA21500140E91C7FCA7EB03E0EB07F8 EB0C3C1318EB303E136013C0A248485AA2C7FCA25CA4495AA4495AA4495AA4495AA21238 D87C1FC7FC12FC133E485AEA70F8EA7FE0EA1F80193380A61B>106 D<3907801FC0390FE07FF03918F0E0F83930F1807CEBFB00D860FE133C5B5B00C1147C5B 1201A248485BA34A5AEA07C01660EC03E0A23A0F8007C0C0A2EDC180913803C300D81F00 13C7EC01FE000EEB00F8231B7D9929>110 DI115 D<3903E001C03907F003E0380C7807EA187C0030130314011260EBF80000C014C0 A2EA01F0A2EC0180EA03E0A2EC0300EA07C0A21406A25CA200035B6D5A3801F0E06CB45A 013FC7FC1B1B7D9921>118 D<90387C03C03901FF0FF03907079C30390E03B078000CEB F0F8001813E1123015F0396007C0E015001200A2495AA449C7FC15301238007C1460EAFC 3E15C0EAF87E39F06F03803970C70700383F83FE381F01F81D1B7D9926>120 D E /Fm 5 50 df0 D<13035BA3497EA2497E497EA2497EEBF7 783803E73E3807C71F393F870FE039FE0703F800F8130000C0141800001400B3B01D337E A722>34 D<1307B3B000C0141800F814F800FE1303393F870FE03907C71F003803E73E38 00F778EB7FF06D5AA26D5A6D5AA26DC7FCA37F1D337EA722>I<13E0EA01F0EA03F8A3EA 07F0A313E0A2120F13C0A3EA1F80A21300A25A123EA35AA3127812F8A25A12100D1E7D9F 13>48 D<017F157F2601FFE0903803FFC0000701F890380FF1F0260F83FC90381F003826 1E00FF013C7F001890263F8078130C4890261FC0E07F007090260FE1C07F0060EB07E391 3803F780486DB4C7EA01806E5A157E157F81824B7E0060DAF7E0EB0300913801E3F0DBC3 F85B6C90260381FC13066C90260F00FE5B001C011E90387F803C6C017C90381FE0F82607 C7F86DB45A2601FFE0010313C06C6CC86CC7FC391B7C9942>I E /Fn 45 119 df11 D13 D<1403EC3FF891387FFF80D901E313C014800103133F9138001F80ED070092C7FC80A280 A2808013018080130080147F81143F8149B47E130790380F8FF0EB3E0F496C7E13F83801 F003D803E07F1207380FC0011380121FEA3F0014005A127EA212FE5D481301A35DA24813 035D6C13075D127C4A5A6C91C7FC5C6C133E6C6C5A3807C0F03801FFE0D8003FC8FC223D 7DBB25>I<1406A6ED7FC0913807FFE0ED806091381FFFE091383C7F8002F0C7FC495A49 5A495A49C8FC130E131E5B5B5BA2485AA2485A485AA248C9FCA3121EA2123E123CA3127C 1278A412F8A57EA2127C127E127F7F6C7E13F0EA1FFE380FFFC06C13F86C13FEC66D7E01 3F7F01077F1300EC1FF0140714031401A35DA290381803C0131C90380F0780D903FEC7FC EB00F8234B7CB924>16 D<1338017E14F001FEEB07FC151F49133B15F30001EB01C39138 0383F89039F80700E0020E90C7FC00035B1478EBF0E0EBF1C03807F78001FEC9FCEBFFE0 14FE390FE1FFC09038E01FE09038C007F06E7E001F6D7EA2D98000EB0180A2003F150302 011400010013F8A2485D1606007E0100130E160C00FE151CED7C3848EC1FF00038EC07C0 29267CA430>20 D22 D<017E1438D83FFE147E16FEA2D801FC14FC12000001140116 F85BED03F0120315074914E0150F000715C0ED1F805BED3F00000F147EA2495B4A5A001F 495A5D49485A4A5A003F49C7FC143EEB00F8495A48485AEB0F80D87E3EC8FC13F8EAFFE0 138000F8C9FC27257CA429>I<013FB612E090B712F05A120717E0270F807006C7FC391E 00600E48140C003813E04813C048141CEAC0011200148001035BA213071400A25B157801 1E137CA3133E133C137C157E13FC5B1201157F1203497FA3D801C0131C2C257EA32F>25 D<027FB512C00103B612E0130F5B017F15C09026FF81FEC7FC3901FC007E48487F485A49 7F484880485AA248C7FCA2127EA2153F00FE92C7FC5AA25D157E5A5DA24A5AA24A5A007C 495A5D003C495A003E013FC8FC6C137C380F81F83803FFE0C66CC9FC2B257DA32F>27 D<1503A35DA21506A2150EA2150CA2151CA21518A21538A21530A21570A2EC07FE91383F FFC0903901FCE3F0903907E0E0F890391F80C03ED93E007FEB7C01D801F8EC0F80D803F0 018013C0D807E014071403D80FC015E0D81F801300A248485AA2007E1306A2020E130F12 FE48010C14C0A2021CEB1F80A20218EB3F00A20238137E007C5D1430007E4A5A003E9038 7003F06CEC07C09138600F80D80F80013FC7FC3903E0E0FC3901F8E7F039007FFF80D90F FCC8FCEB01C0A25CA21303A291C9FCA25BA21306A2130EA2130CA22B4B7CB931>30 D34 D<121C127FEAFF80A5EA7F00121C0909798817> 58 D<121C127FEAFF80A213C0A3127F121C1200A412011380A2120313005A1206120E5A 5A5A12600A19798817>II<150C151E153EA2153C157CA2157815F8A215F01401A215E01403A215C01407A215 80140FA215005CA2141E143EA2143C147CA2147814F8A25C1301A25C1303A2495AA25C13 0FA291C7FC5BA2131E133EA2133C137CA2137813F8A25B1201A25B1203A25B1207A25B12 0FA290C8FC5AA2121E123EA2123C127CA2127812F8A25A12601F537BBD2A>I<126012FC B4FCEA7FC0EA1FF0EA07FCEA01FF38007FC0EB1FF0EB07FCEB01FF9038007FC0EC1FF0EC 07FCEC01FF9138007FC0ED1FF0ED07FCED01FF9238007FC0EE1FF0EE07FCEE01FF933800 7F80EF1FC0A2EF7F80933801FF00EE07FCEE1FF0EE7FC04B48C7FCED07FCED1FF0ED7FC0 4A48C8FCEC07FCEC1FF0EC7FC04948C9FCEB07FCEB1FF0EB7FC04848CAFCEA07FCEA3FF0 EA7FC048CBFC12FC1270323279AD41>I64 D<9339FF8001C0030F13E0 037F9038F80380913A01FF807E07913A07F8000F0FDA1FE0EB079FDA3F80903803BF0002 FFC76CB4FCD901FC80495A4948157E495A495A4948153E017F163C49C9FC5B1201484816 385B1207485A1830121F4993C7FCA2485AA3127F5BA312FF90CCFCA41703A25F1706A26C 160E170C171C5F6C7E5F001F5E6D4A5A6C6C4A5A16076C6C020EC8FC6C6C143C6C6C5C6C B4495A90393FE00FC0010FB5C9FC010313FC9038007FC03A3D7CBA3B>67 D<0103B812F05BA290260007F8C7123F4B1407F003E0020F150118005DA2141FA25D19C0 143FA24B1330A2027F1470190092C7126017E05C16014A495A160F49B6FCA25F9138FC00 0F01031407A24A6DC8FCA201075C18034A130660010F160693C7FC4A150E180C011F161C 18184A1538A2013F5E18F04A4A5AA2017F15074D5A91C8123F49913803FF80B9FCA295C7 FC3C397DB83D>69 D<0103B812E05BA290260007F8C7123F4B140FF003C0140F18015DA2 141FA25D1980143FA25D1760027F14E095C7FC92C75AA24A1301A24A495A16070101141F 91B6FC94C8FCA2903903FC001F824A130EA21307A24A130CA2010F141CA24A90C9FCA213 1FA25CA2133FA25CA2137FA291CBFC497EB612C0A33B397DB835>II<0103B5D8F803B512F8495DA290260007F8C73807F8004B5DA2020F15 0F615DA2021F151F615DA2023F153F615DA2027F157F96C7FC92C8FCA24A5D605CA249B7 FC60A202FCC7120101031503605CA201071507605CA2010F150F605CA2011F151F605CA2 013F153F605CA2017F157F95C8FC91C8FC496C4A7EB690B6FCA345397DB845>I<0103B5 00F8903807FFFC5BA290260007F8C813804BEDFC0019F0020F4B5AF003804B4AC7FC180E 021F1538604B5CEF0380023F4AC8FC170E4B133C1770027F5C4C5ADB0007C9FC160E4A5B 167E4A13FE4B7E01015B92380E7F80ECFC1CED383F010301E07FECFDC04A486C7EECFF00 D907FC6D7E5C4A130783130F707E5C1601011F81A24A6D7EA2013F6F7EA24A143F84137F 717E91C8123F496C81B60107B512C0A26146397DB847>75 D<902603FFF891381FFFF849 6D5CA2D90007030113006FEC007C02061678DA0EFF157081020C6D1460A2DA1C3F15E070 5CEC181F82023815016F6C5C1430150702706D1303030392C7FC02607FA2DAE0015C7013 06ECC0008201016E130EEF800C5C163F0103EDC01C041F131891C713E0160F49EDF03818 300106140717F8010E02031370EFFC60130CEE01FE011C16E004005B011815FF177F1338 600130153FA20170151F95C8FC01F081EA07FCB512E01706A245397DB843>78 D<0103B7FC4916E018F8903B0007F80007FC4BEB00FE187F020FED3F80F01FC05DA2021F 16E0A25DA2143FF03FC05DA2027FED7F80A292C8130018FE4A4A5A604AEC07F04D5A0101 ED3FC04CB4C7FC91B612FC17E0D903FCCAFCA25CA21307A25CA2130FA25CA2131FA25CA2 133FA25CA2137FA291CBFC497EB6FCA33B397DB835>80 D<4BB4FC031F13F09238FE01FC 913903F0007EDA07C0EB1F80DA1F80EB0FC0023EC7EA07E002FCEC03F0495A4948EC01F8 495A4948EC00FC495A013F16FE49C9FC13FE187F485A12035B12075B120F4916FF121FA2 485AA34848ED01FEA448C9EA03FCA3EF07F8A218F0170F18E0171F18C0EF3F807EEF7F00 17FEDA07C05B6C90391FF001F8903980383803001F496C485A9139E00C0FE0260FC0C0EB 1F80D807E1D90E3FC7FC0280137ED803F1EB07F8D801F95C3A007FC00FC0903A3FE07F00 03903807FFFE0100018F5BDA000F1306170E171E705A177CEEC1F816FF5FA25F5F6F5B6F 48C7FCED00F8384B7CBA42>I<0003B812FEA25A903AF8003FC00101C0913880007E4848 163C90C7007F141C121E001C92C7FCA2485CA200305C007017180060130112E0485CA214 03C716005DA21407A25DA2140FA25DA2141FA25DA2143FA25DA2147FA292C9FCA25CA25C A21301A25CA21303A25CEB0FFC003FB6FC5AA237397EB831>84 D<003FB56C48B5128048 5DA226007F80C7381FF00091C8EA07C0604993C7FCA2491506A20001160E170C5BA20003 161C17185BA20007163817305BA2000F167017605BA2001F16E05F5BA2003F15015F5BA2 007F150394C8FC90C8FCA25E4815065A160E160C161C161816385E127E5E4B5A6C4A5A4B C9FC6C6C131E6C6C5B6C6C13F83903F807E06CB55A6C6C48CAFCEB0FF0393B7BB839>I< 267FFFFC91383FFFC0B55DA2000390C83807FC006C48ED03E06060000094C7FC5F17065F A25F6D5DA26D5D17E05F4C5AA24CC8FC6E1306A2013F5C161C16185EA25E6E5BA2011F49 5A150393C9FC1506A25D6E5AA2010F5B157015605DA2ECE18002E3CAFC14F3EB07F614FE 5C5CA25C5CA26D5AA25C91CBFC3A3B7CB830>I<91B712FCA25B9239E00007F84AC7EA0F F0D903F8EC1FE04AEC3FC04AEC7F804A150049485C91C7485A4C5A010E4A5A4C5A010C4A 5A011C4A5A01185D167F4CC7FC90C7485A4B5A4B5A4B5A5E151F4B5A4B5A4BC8FC4A5A4A 5A4A5A5D140F4A5A4A5A4A48130C4AC7FC495A4A141C01031518495A4948143849481430 49481470495A49C812F0495D000115014848140348484A5A4848140F4848141F4848EC7F 804848EB07FF90B7FCB8FC94C7FC36397BB839>90 D<147E903803FF8090390FC1C38090 391F00EFC0017E137F49133F485A4848EB1F8012075B000F143F48481400A2485A5D007F 147E90C7FCA215FE485C5AA214015D48150CA21403EDF01C16181407007C1538007E010F 1330003E131F027B13706C01E113E03A0F83C0F9C03A03FF007F80D800FCEB1F0026267D A42C>97 D99 D<163FED1FFFA3ED007F167EA216FEA216FCA21501A216F8A21503A216F0 A21507A2027E13E0903803FF8790380FC1CF90381F00EF017EEB7FC049133F485A484813 1F000715805B000F143F485A1600485A5D127F90C7127EA215FE5A485CA21401A248ECF8 0CA21403161CEDF0181407007C1538007E010F1330003E131F027B13706C01E113E03A0F 83C0F9C03A03FF007F80D800FCEB1F00283B7DB92B>II<16F8ED03FEED0F8792 381F0F80ED3E3F167F157CA215FC1700161C4A48C7FCA414035DA414075DA20107B512F0 A39026000FE0C7FC5DA4141F5DA4143F92C8FCA45C147EA514FE5CA413015CA4495AA45C 1307A25C121E123F387F8F80A200FF90C9FC131E12FEEA7C3CEA7878EA1FF0EA07C0294C 7CBA29>I104 D107 D109 DI<02FC13C0903803FF0190380F838390 383F01C790397E00EF8049137F485A4848133F000715005B485A001F5C157E485AA2007F 14FE90C75AA3481301485CA31403485CA314075D140F127C141F007E495A003E137F381F 01EF380F839F3903FF1F80EA00FC1300143F92C7FCA35C147EA314FE5C130190387FFFF0 A322357DA425>113 D<3903E001F83907F807FE390E3C1E07391C3E381F3A183F703F80 0038EBE07F0030EBC0FF00705B00601500EC007E153CD8E07F90C7FCEAC07EA2120013FE 5BA312015BA312035BA312075BA3120F5BA3121F5B0007C9FC21267EA425>I<14FF0103 13C090380F80F090383E00380178131C153C4913FC0001130113E0A33903F000F06D1300 7F3801FFE014FC14FF6C14806D13C0011F13E013039038003FF014071403001E1301127F A24814E0A348EB03C012F800E0EB07800070EB0F006C133E001E13F83807FFE0000190C7 FC1E267CA427>II<13F8 D803FE1438D8070F147C000E6D13FC121C1218003814011230D8701F5C12601503EAE03F 00C001005B5BD8007E1307A201FE5C5B150F1201495CA2151F120349EC80C0A2153F1681 EE0180A2ED7F0303FF130012014A5B3A00F8079F0E90397C0E0F1C90393FFC07F8903907 F001F02A267EA430>I<01F8EB03C0D803FEEB07E0D8070F130F000E018013F0121C1218 0038140700301403D8701F130112601500D8E03F14E000C090C7FC5BEA007E16C013FE5B 1501000115805B150316001203495B1506150E150C151C151815385D00015C6D485A6C6C 485AD97E0FC7FCEB1FFEEB07F024267EA428>I E /Fo 37 90 df45 D<120FEA3FC0EA7FE0EAFFF0A6EA7FE0EA3FC0EA0F000C0C7A8B19>I48 D<147814F81303131FEA03FFB5FCA3EAFC1F1200B3B2007FB512FEA41F317AB02C>III<151F5D5DA25D5C5C5C5CA25C143D147D14 F9EB01F114E1EB03C1EB0781130FEB1F01133E133C137813F01201EA03E0EA07C01380EA 0F00121E123E5A5AB712FEA4C700031300A80103B512FEA427317EB02C>I<000C140ED8 0FE013FE90B5FC5D5D5D5D5D92C7FC14FC14F091C8FC1380A6EB87FE9038BFFFC090B512 F09038FC0FF89038E003FE01C07F497E01001480000E6D13C0C8FCA216E0A3121FEA7F80 7F487EA316C05B5CD87F801480D87C0014006C5B393F8007FE391FE01FFC0007B512F06C 14C0C691C7FCEB1FF823327CB02C>II<123C123F90B612F8A44815F016E016C0168016005D007C C7127E00785C4A5A00F8495A48495A4A5A4A5AC7FC4AC7FC147E14FE5C13015C1303A249 5AA2130FA2131FA25C133FA4137FA96D5AA2010FC8FC25337BB12C>III< 120FEA3FC0EA7FE0EAFFF0A6EA7FE0EA3FC0EA0F00C7FCA9120FEA3FC0EA7FE0EAFFF0A6 EA7FE0EA3FC0EA0F000C217AA019>I65 DIIIII<912601FFE013 70021F01FC13F091B61201010315C3010F9038C00FFF90393FFE0003D97FF81300D9FFE0 147F4849143F4849141F4890C8120F485A1707485A1703485AA2007F1601A25B94C8FC12 FFA90303B612C0A2127F7F92C7387FF000A2123FA26C7EA26C7EA26C7E6C7F6C7F6C6D14 FFEB7FF8D93FFE130390390FFFE00F010390B512E301001580021F9038FE0030020101F0 90C7FC3A357BB345>III75 DIII<913803FF80027F13FC49B6FC0107010113C0903A1FF8003FF0D93F E0EB0FF8D9FFC0EB07FE48496D7E4890C76C13804980000717C04848ED7FE0A24848ED3F F0A2003F17F8A2007F17FC49151FA300FF17FEAB007F17FCA26D153FA2003F17F8A36C6C ED7FF0A26C6CEDFFE0000717C06D5C6C17806C6D4913006C6D495AD97FF0EB1FFCD91FF8 EB3FF0903A07FF01FFC0010190B5C7FC6D6C13FC020713C037357BB342>II<913803FF 80027F13FC49B6FC0107010113C0903A1FF8003FF0D93FE0EB0FF8D9FFC0EB07FE48496D 7E4890C76C1380A248486E13C04848ED7FE0A2001F17F049153F003F17F8A2007F17FC49 151FA300FF17FEAB007F17FCA36D153F003F17F8A36C6CED7FF015FE000F496C14E06C6C 48903880FFC091380783C02803FF0F01E113806C90268E00F313006C01CEEB7FFED97FEE 5CD91FFF14F00107903881FFC0010190B5EA00046D6C150E0207148091C7381FC01EEFE0 7EEFFFFEA218FC82A37013F818F0827013E07013C0EF3F0037437BB342>III<003FB812F8A4D9F003EB801FD87F80ED 03FC01001501007E1600007C177CA20078173CA400F8173E48171EA4C71600B3A9011FB6 12F0A437327DB13E>IIII<007FB5D8E03FB51280A426007F F8C7007EC7FC6D6C14FE6E495A6D6C5C6D4A5A6D6D485AEDC00F6D01E05B6D4A5A6F48C8 FC6D6D5A91387FFC7E023F5BEDFFF8806E5B6E5B5E6E7F806E7F82825C824A7FDA07EF7F EC0FE703C77FDA1F837FDA3F017F4A7E027E804A6D7E4948133F01036E7E4A8049486D7F 49487F011F6E7F4A8149C76C7F017E80B500FC013FEBFFF0A43C337DB243>II E /Fp 4 89 df50 D<903807F80290383FFF069038FC038E3903F000FED8 07C0133E485A48C7121E003E140E123C007C1406A2127800F81400A61278007C1406A212 3C003E140C7E6C6C13186C6C1338D803F013703900FC03C090383FFF80903807FC001F1E 7C9C28>67 D<3803FC08380FFF18381E03F8EA3800481378481338A21418A26C13001278 127CEA3FE0EA1FFE380FFFC0000113E038000FF0EB00F81478143C141C12C0A36C131814 3800F8137038FE01E038CFFFC000811300161E7C9C1F>83 D<3A7FFE03FFC0A23A03F000 F8006C6C13E06C6C5B4A5AD97E03C7FC6D5AEB1F8EEB0FDCEB07F85C13036D7E80497E14 7EEB063F496C7E90381C0FC0496C7E137090386003F0496C7E00016D7E0007147E3AFFF0 03FFF0A2241C7E9B29>88 D E /Fq 15 116 df<1418A214381430A21438EC1BFCEC1FFF EC3C0391B5FC903801E3FC903803C00049C7FC130E5B133C5B5B485AA2485A485AA248C8 FCA2121EA25AA3127C1278A312F8A25AA37EA47E7E127EEA7F807FEA3FF86CB4FC6C13E0 6C13F8000113FE6C6C7E010F138013019038003FC0141F140F1407A21580A29038200F00 1330EB3C1EEB0FF8EB03E020447DB322>16 D<137001FCEB07C00001EC1FE0157F9038F8 01EFEC038F00039038070FC091381E0780D9F038C7FC5C00075BEBF3C049C8FC13FE380F FFE014FE9038C1FF809038C01FE0001FEB07F0A2EB8003EDF808003F151CEDF0181300A2 4815381630007EECE070166000FE903801F0E0EDF1C0489038007F800038EC1E0026227D A02C>20 D<123C127E12FFA4127E123C08087A8715>58 D<123C127EB4FCA21380A2127F 123D1201A412031300A25A1206120E120C121C5A5A126009177A8715>I<171C177EEE01 FEEE07FCEE1FF0EE7FC0923801FF00ED07FCED1FF0ED7FC04A48C7FCEC07FCEC1FF0EC7F C04948C8FCEB07FCEB1FF0EB7FC04848C9FCEA07FCEA1FF0EA7FC048CAFCA2EA7FC0EA1F F0EA07FCEA01FF38007FC0EB1FF0EB07FCEB01FF9038007FC0EC1FF0EC07FCEC01FF9138 007FC0ED1FF0ED07FCED01FF9238007FC0EE1FF0EE07FCEE01FEEE007E171C2F2E7AA93C >I<1530157815F8A215F01401A215E01403A215C01407A21580140FA215005CA2143EA2 143C147CA2147814F8A25C1301A25C1303A25C1307A2495AA291C7FC5BA2131E133EA213 3C137CA2137813F8A25B1201A25B1203A2485AA25B120FA290C8FC5AA2121E123EA2123C 127CA2127812F8A25A12601D4B7CB726>I<010FB712FEA218FC903A003FC00003170018 7C4B143CA2027F151C181892C8FCA25CA24A1303A201014A1338040613304A1500160E13 035E4A137C91B512FC5B5EECF0001638130F16305C1860011F027013E0046013C04A1401 04001380133F17034A15005F017F150EA291C8121E5F49157C5F4914030001ED1FF0B8FC A25F37337DB239>69 D<010FB712FCA218F8903A003FC00007170018785D1838147F1830 92C8FCA25CA25C16060101020E1370040C13604A1500A20103141C5E5C16F849B5FCA25E ECF001010F130016605CA2011F14E05E5CA2013F91C8FCA25CA2137FA291CAFCA25BA25B 487EB6FCA336337DB231>I<0003B812F05A18E0903AF0007F000FD80F8049130390C714 01000E5C48EE00C01401121800384A1301A2003001031580127000605CA20207140300E0 1700C74990C7FCA2140FA25DA2141FA25DA2143FA25DA2147FA292C9FCA25CA25CA21301 A25CA21303A25C497E001FB512FEA334337FB22D>84 D100 D107 D110 D<903801F803903807FE0790381F071F9038 7C03BF9038F801BED801F013FE00031300485A4913FC120F485A1401D83F0013F8A34813 03007E14F0A300FE13074814E0A3140F15C0127C141F143F003CEB7F80003E13FF381E01 DF380F07BF3907FE3F00EA00F813005C147EA314FE5CA21301A25C90387FFFE090B5FCA2 20307EA022>113 D<3903E003E0390FF81FF8391C7C3C1C0018EB703E39383EE0FE3830 3FC0EB7F800070EB00FCEA607E157000E01400EAC0FEEA40FC1200A212015BA312035BA3 12075BA3120F5BA3121F5B0007C8FC1F227EA023>II E /Fr 81 128 df<91393FE00FE0903A 01FFF83FF8903A07E01EF83C903A1F800FF07E903A3F001FE0FE017E133F4914C0485A17 38484890381F8000ACB812C0A33B03F0001F8000B3A7486C497EB50083B5FCA32F357FB4 2D>11 DI15 D<127812FCA27E7EEA7F80121F EA0FC0EA07E01203EA00F01378133C13080E0E78B326>18 D<003C13F0387E01F838FF03 FCA2EB83FEA2EA7F81383D80F600011306A40003130EEB000CA248131C00061318000E13 38000C1330001C13704813E0387001C00060138017177EB326>34 D<123C127EB4FCA21380A2127F123D1201A412031300A25A1206120E120C121C5A5A1260 09177AB315>39 D<14C01301EB0380EB0F00130E5B133C5B5BA2485A485AA212075B120F 90C7FC5AA2121E123EA3123C127CA55AB0127CA5123C123EA3121E121FA27E7F12077F12 03A26C7E6C7EA213787F131C7F130FEB0380EB01C01300124A79B71E>I<12C07E127012 3C121C7E120F6C7E6C7EA26C7E6C7EA27F1378137C133C133EA2131E131FA37F1480A5EB 07C0B0EB0F80A514005BA3131E133EA2133C137C137813F85BA2485A485AA2485A48C7FC 120E5A123C12705A5A124A7CB71E>I<156015F0B3A4007FB812C0B912E0A26C17C0C800 F0C8FCB3A4156033327CAB3C>43 D<123C127EB4FCA21380A2127F123D1201A412031300 A25A1206120E120C121C5A5A126009177A8715>II<123C127E12 FFA4127E123C08087A8715>I48 D<13075B5B137FEA07FFB5FC13BFEAF83F1200B3B3A2497E007FB51280A319327A B126>IIII<000C14C0380FC00F90B5128015005C5C14F014C0D80C18C7FC90 C8FCA9EB0FC0EB7FF8EBF07C380FC03F9038001F80EC0FC0120E000CEB07E0A2C713F014 03A215F8A41218127E12FEA315F0140712F8006014E01270EC0FC06C131F003C14806CEB 7F00380F80FE3807FFF8000113E038003F801D347CB126>I<14FE903807FF80011F13E0 90383F00F0017C13703901F801F8EBF003EA03E01207EA0FC0EC01F04848C7FCA248C8FC A35A127EEB07F0EB1FFC38FE381F9038700F809038E007C039FFC003E0018013F0EC01F8 130015FC1400A24814FEA5127EA4127F6C14FCA26C1301018013F8000F14F0EBC0030007 EB07E03903E00FC03901F81F806CB51200EB3FFCEB0FE01F347DB126>I<1230123C003F B6FCA34814FEA215FC0070C7123800601430157015E04814C01401EC0380C7EA07001406 140E5C141814385CA25CA2495A1303A3495AA2130FA3131F91C7FCA25BA55BA9131C2034 7CB126>II< EB0FE0EB7FF8EBFFFE3803F83F3907E00F80390FC007C0D81F8013E0EC03F0EA3F0048EB 01F8127EA200FE14FC1400A415FEA5007E1301A2127F7E1403EA1F80000F13073807C00E 3803E01C3801F03838007FF090381FC0FC90C7FC1401A215F8A215F01403001F14E0383F 800715C0140FEC1F809038003F00001C137E381F01FC380FFFF0000313C0C690C7FC1F34 7DB126>I<123C127E12FFA4127E123C1200B0123C127E12FFA4127E123C08207A9F15>I< 123C127E12FFA4127E123C1200B0123C127E12FE12FFA3127F123F1203A412071206A312 0E120C121C1238123012701260082F7A9F15>I<007FB812C0B912E0A26C17C0CCFCAC00 7FB812C0B912E0A26C17C033147C9C3C>61 D<15E0A34A7EA24A7EA34A7EA3EC0DFE140C A2EC187FA34A6C7EA202707FEC601FA202E07FECC00FA2D901807F1507A249486C7EA301 066D7EA2010E80010FB5FCA249800118C77EA24981163FA2496E7EA3496E7EA200018216 07487ED81FF04A7ED8FFFE49B512E0A333367DB53A>65 DIIIIIIII<017FB5FCA39038003FE0EC1FC0B3B1127EB4FCA4EC3F 805A0060140000705B6C13FE6C485A380F03F03803FFC0C690C7FC20357DB227>IIIIIIIII<90381FE00390387FFC0748B5FC3907F01FCF390F8003FF48C7FC003E80814880 A200788000F880A46C80A27E92C7FC127F13C0EA3FF013FF6C13F06C13FF6C14C06C14F0 C680013F7F01037F9038003FFF140302001380157F153FED1FC0150F12C0A21507A37EA2 6CEC0F80A26C15006C5C6C143E6C147E01C05B39F1FC03F800E0B512E0011F138026C003 FEC7FC22377CB42B>I<007FB712FEA390398007F001D87C00EC003E0078161E0070160E A20060160600E01607A3481603A6C71500B3AB4A7E011FB512FCA330337DB237>IIII89 D<003FB612FCA39039F80007F813 C090C7EA0FF0003EEC1FE0123C0038EC3FC00078EC7F801270EDFF004A5AA20060495AA2 4A5A4A5AC7FC4A5A4A5AA24A5A4AC7FCA2495A495AA2495A495AA24948130C495AA2495A 49C7FCA24848141CA2485A485A1638485A4848147816F84848130148481307153FB7FCA3 26337CB22F>II<0003130C48131C00 0E133848137000181360003813E0003013C0EA700100601380A2EAE00300C01300A400DE 137800FF13FCEB83FEA2EA7F81A2383F00FC001E1378171774B326>II97 DII<153FEC0FFFA3EC007F81AEEB07F0EB3FFCEBFC0F 3901F003BF3907E001FF48487E48487F8148C7FCA25A127E12FEAA127E127FA27E6C6C5B A26C6C5B6C6C4813803A03F007BFFC3900F81E3FEB3FFCD90FE0130026357DB32B>III<151F90391FC07F809039FFF8E3C03901F07FC73907E03F03 3A0FC01F83809039800F8000001F80EB00074880A66C5CEB800F000F5CEBC01F6C6C48C7 FCEBF07C380EFFF8380C1FC0001CC9FCA3121EA2121F380FFFFEECFFC06C14F06C14FC48 80381F0001003EEB007F4880ED1F8048140FA56C141F007C15006C143E6C5C390FC001F8 3903F007E0C6B51280D91FFCC7FC22337EA126>IIIIII<2703F01FE013FF00FF90267FF80313C0903B F1E07C0F03E0903BF3803E1C01F02807F7003F387FD803FE1470496D486C7EA2495CA249 5CB3486C496C487EB53BC7FFFE3FFFF0A33C217EA041>I<3903F01FC000FFEB7FF09038 F1E0FC9038F3807C3907F7007EEA03FE497FA25BA25BB3486CEB7F80B538C7FFFCA32621 7EA02B>II<3903F03F8000 FFEBFFE09038F3C0F89038F7007ED807FE7F6C48EB1F804914C049130F16E0ED07F0A3ED 03F8A9150716F0A216E0150F16C06D131F6DEB3F80160001FF13FC9038F381F89038F1FF E0D9F07FC7FC91C8FCAA487EB512C0A325307EA02B>I<903807F00390383FFC07EBFC0F 3901F8038F3807E001000F14DF48486CB4FC497F123F90C77E5AA25A5AA9127FA36C6C5B 121F6D5B000F5B3907E003BF3903F0073F3800F81EEB3FF8EB0FE090C7FCAAED7F809138 0FFFFCA326307DA029>I<3803E07C38FFE1FF9038E38F809038E71FC0EA07EEEA03ECA2 9038FC0F8049C7FCA35BB2487EB512E0A31A217FA01E>II<1330A51370A313F0A21201A212031207381FFFFEB5FCA238 03F000AF1403A814073801F806A23800FC0EEB7E1CEB1FF8EB07E0182F7FAD1E>IIIII<3A7FFF807FF8A33A07F8001FC00003EC0F800001EC070015066C6C5B A26D131C017E1318A26D5BA2EC8070011F1360ECC0E0010F5BA2903807E180A214F30103 90C7FC14FBEB01FEA26D5AA31478A21430A25CA214E05CA2495A1278D8FC03C8FCA21306 130EEA701CEA7838EA1FF0EA0FC025307F9F29>I<003FB512F0A2EB000F003C14E00038 EB1FC00030EB3F800070137F1500006013FE495A13035CC6485A495AA2495A495A49C7FC 153013FE485A12035B48481370485A001F14604913E0485A387F000348130F90B5FCA21C 207E9F22>I<3807C001390FF80380391FFE0F00383FFFFE38783FFC38E00FF8384001F0 19077AB126>126 D<001C1370387F01FC00FF13FEA4007F13FC381C0070170879B226>I E /Fs 54 123 df<0060133000F813F8387C03F0383E0FC0381F1F80380FFE006C5AEA03 F0EA01C015096CAE27>20 D39 D44 DI<121C127F12FFA412FE12380808778718>I48 DIII55 DII<1370EA01FC1203A413F8EA00E01300B0121C127F 5AA45A12380E20779F18>I<161C163CA2167C16FCA21501821503A2ED077E150F150E15 1CA21538A2157015F015E0EC01C0A2913803807F82EC0700A2140E141E141C5CA25CA25C 49B6FCA25B913880003F49C7EA1F80A2130E131E131C133C13385B13F05B12011203D80F F0EC3FC0D8FFFE903807FFFEA32F367BB539>65 D67 D<0107B612C04915F017FC903A003F8001FEEE007FEF1F8092C7EA0FC0EF 07E05CEF03F0147E170102FE15F8A25CA21301A25CA2130317035CA2130718F04A1407A2 130F18E04A140F18C0011F151F18805CEF3F00133F177E91C85AA2494A5A4C5A017E4A5A 4C5A01FE4A5A047EC7FC49495A0001EC0FF8007FB612E0B7C8FC15F835337BB23A>I<01 07B712F05B18E0903A003F80001F1707170392C7FC17015C18C0147EA214FEA24A130EA2 0101EC1E03041C13804A91C7FC163C13035E9138F001F891B5FC5B5EECE0011500130F5E 5C1707011F01015BEEC00E0280141E92C7121C133F173C91C812381778495DA2017E1401 4C5A01FE14074C5A49141F00014AB45A007FB7FCB8FC94C7FC34337CB234>I<0107B712 E05B18C0903A003F80003F170F170792C7FC17035C1880147EA214FEA25C161C0101EC3C 07043813004A91C7FCA20103147816704A13F0150349B5FCA25EECE003130F6F5A14C0A2 011F13035E1480A2013F90C9FCA291CAFCA25BA2137EA213FEA25B1201387FFFFCB5FCA2 33337CB232>I<92391FE001809238FFF8030207EBFE07913A1FF01F0F0091393F80079F 9139FE0003DFD901F86DB4FCD907F05C49481300495A4948147E49C8127C137E13FE485A 48481578A2485AA248481570A2485A94C7FC123F5BA3127F90CBFCA400FE91383FFFFCA2 5F9238003F8094C7FCA2007E5DA2167EA2007F15FE7E5E6C6C1301A26C6C495A6D13076C 6CEB0F786C6C133E3A00FF01FC3090387FFFF0011F01C0C8FCD903FEC9FC313775B43B> I<010FB51280A216009038003FC05DA292C7FCA25CA2147EA214FEA25CA21301A25CA213 03A25CA21307A25CA2130FA25CA2131FA25CA2133FA291C8FCA25BA2137EA213FEA25B12 01B512F8A25C21337BB21E>73 D<91381FFFFE5C16FC9138003F80A31600A25D157EA315 FE5DA314015DA314035DA314075DA3140F5DA3141F5DA3143F92C7FCA2121C007E5B00FE 137EA214FE485BEAF80100E05B495A387007E038780FC06C48C8FCEA1FFCEA07F0273579 B228>I<0107B512C05BA29026003FC0C7FC5DA292C8FCA25CA2147EA214FEA25CA21301 A25CA21303A25CA21307A25CA2130FA25C17E0011F140117C05C1603013F1580160791C7 FCEE0F005B5E017E143EA201FE5CED01FC4913030001EC1FF8007FB6FCB7FC5E2B337CB2 30>76 D<902607FFC0ED7FFC4917FF81D9003F4B1300611803023BED077CA2027BED0EFC 610273151C1838DAF1F01439F071F014E118E10101ED01C36102C1EC0383EF0703010316 07050E5BEC80F8171C0107ED380F6102001470A249EDE01FDC01C090C7FC130EEE038001 1E017C5C933807003E011C140EA2013C4A137E187C01385C5E017816FC6F485B1370ED3F C001F0EC80016000011500D807F81503277FFF803E90B512C0B5EB3C01151C46337BB245 >I<902607FF8090383FFFC0496D5BA2D9001F913803F8004A6C6D5A6060EC3BF0027B14 0360EC71F8A202F11407DAF0FC91C7FC14E0A20101017E5B170E14C0810103151EEE801C EC801FA20107ECC03C030F1338140016E049010713781770010E14F01503011E15F0705A 011C1301A2013C14FD03005B133816FF0178147F5F0170143FA213F070C8FC1201EA07F8 267FFF807FB5140EA23A337BB239>II< 0107B612C04915F883903A003F8001FEEE003FEF1F8092C713C0170F5C18E0147EA214FE EF1FC05CA201011680173F4A1500177E010315FE5F4AEB03F8EE07E00107EC3FC091B6C7 FC16F802E0C9FC130FA25CA2131FA25CA2133FA291CAFCA25BA2137EA213FEA25B120138 7FFFF0B5FCA233337CB234>II<0107B512FE49ECFFC017F0903A003F8007F8EE01 FCEE007E92C7127F835C1880147EA214FEEF7F005CA2010115FE5F4A13015F01034A5AEE 0FC04A495A04FEC7FC49B512F016C09138E003E0ED01F8010F6D7E167C4A137EA2131FA2 5CA2013F14FEA291C7FCA24913015E137EEF01C001FE150318805B00011607277FFFF000 1400B5ECFE0EEE7E1CC9EA1FF8EE07E032357BB238>I<913901FC018091380FFF03023F 13C791387E07EF903A01F801FF0049487E4A7F495A4948133E131F91C7FC5B013E143CA3 137E1638A293C7FC137FA26D7E14E014FE90381FFFC06D13F86D7F01017F6D6C7E020F7F 1400153F6F7E150FA4120EA2001E5D121CA2151F003C92C7FCA2003E143E5D127E007F5C 6D485A9038C007E039F3F80FC000F0B5C8FC38E03FFC38C00FF029377AB42B>I<0003B8 12C05A1880903AF800FC003F260FC001141F0180150F01005B001EEE07001403121C003C 4A5BA200380107140E127800705CA2020F141E00F0161CC74990C7FCA2141FA25DA2143F A292C9FCA25CA2147EA214FEA25CA21301A25CA21303A25CA21307A25C497E001FB512F0 5AA2323374B237>I<3B3FFFF801FFFE485CA2D801FEC7EA1FC049EC0F80170049140EA2 161E120349141CA2163C1207491438A21678120F491470A216F0121F495CA21501123F90 C75BA215035A007E5DA2150712FE4892C7FCA25D150E48141E151C153C153815786C5C5D 007C1301007E495A003EEB0F806C011EC8FC380FC0FC6CB45A000113E06C6CC9FC2F3570 B239>I97 D<137EEA0FFE121F5B1200A35BA21201A25BA21203A25BA21207A2 EBC3E0EBCFF8380FDC3EEBF81F497E01E01380EA1FC0138015C013005AA2123EA2007E13 1F1580127CA2143F00FC14005AA2147EA25CA2387801F85C495A6C485A495A6C48C7FCEA 0FFCEA03F01A3578B323>I<14FCEB07FF90381F078090383E03C0EBFC013801F8033803 F0073807E00F13C0120F391F80070091C7FC48C8FCA35A127EA312FE5AA4007C14C0EC01 E0A2EC03C06CEB0F80EC1F006C137C380F81F03803FFC0C648C7FC1B2278A023>III<151FED7FC0EDF0E0020113F0EC 03E3A2EC07C316E0EDC1C091380FC0005DA4141F92C7FCA45C143E90381FFFFEA3D9007E C7FC147CA414FC5CA513015CA413035CA413075CA3130FA25CA3131F91C8FCA35B133E12 38EA7E3CA2EAFE7812FC485AEA78E0EA3FC0000FC9FC244582B418>I<143FECFF809038 03E1E6903807C0FF90380F807FEB1F00133E017E133F49133EA24848137EA24848137CA2 15FC12074913F8A21401A2D80FC013F0A21403120715E01407140F141F3903E03FC00001 137FEBF0FF38007FCF90381F0F801300141FA21500A25C143E1238007E137E5C00FE5B48 485A387803E0387C0F80D81FFFC7FCEA07F820317CA023>III<1538157C15FCA315701500AB143EECFF80903801E3C090380383E0EB07 01130FEB0E03131C133C133814071378013013C01300140FA21580A2141FA21500A25CA2 143EA2147EA2147CA214FCA25CA21301A25CA213035C1238387E07C0A238FE0F804848C7 FCEAF83EEA787CEA3FF0EA0F801E4283B118>I<133FEA07FF5A13FEEA007EA3137CA213 FCA213F8A21201A213F0A21203A213E0A21207A213C0A2120FA21380A2121FA21300A25A A2123EA2127EA2127C1318EAFC1C133CEAF838A21378137012F013F0EAF8E01279EA3FC0 EA0F00103579B314>108 D<2703C003F8137F3C0FF00FFE01FFC03C1E783C1F07C1E03C 1C7CF00F8F01F03B3C3DE0079E0026383FC001FC7FD97F805B007001005B5E137ED8F0FC 90380FC00100E05FD860F8148012000001021F130360491400A200034A13076049013E13 0FF081800007027EEC83C0051F138049017C1403A2000F02FC1407053E130049495CEF1E 0E001F01015D183C010049EB0FF0000E6D48EB03E03A227AA03F>I<3903C007F0390FF0 1FFC391E787C1E391C7CF01F393C3DE00F26383FC01380EB7F8000781300EA707EA2D8F0 FC131F00E01500EA60F8120000015C153E5BA20003147E157C4913FCEDF8180007153C02 01133801C013F0A2000F1578EDE070018014F016E0001FECE1C015E390C7EAFF00000E14 3E26227AA02B>I<14FCEB07FF90381F07C090383E03E09038FC01F0EA01F83903F000F8 485A5B120F484813FCA248C7FCA214014814F8127EA2140300FE14F05AA2EC07E0A2007C EB0FC01580141FEC3F006C137E5C381F01F0380F83E03803FF80D800FCC7FC1E2278A027 >I<011E137C90387F81FF9039F3C387C09039E3EF03E03901E1FE01D9C1FC13F0EBC3F8 000313F0018314F814E0EA07871307000313C01200010F130316F01480A2011F130716E0 1400A249EB0FC0A2013EEB1F80A2017EEB3F00017F133E5D5D9038FF81F09038FDC3E090 38F8FF80027EC7FC000190C8FCA25BA21203A25BA21207A25BB5FCA325307FA027>I<39 03C00FC0390FF03FF0391E78F078391C7DE03C393C3FC0FC00381380EB7F00007814F8D8 707E13701500EAF0FC12E0EA60F812001201A25BA21203A25BA21207A25BA2120FA25BA2 121FA290C8FC120E1E227AA020>114 DI<1303EB0F80A3131FA21400A25BA2133EA2137EA2137C387FFFF8A2B5FC38 00F800A21201A25BA21203A25BA21207A25BA2120FA25B1460001F13F014E01300130114 C01303001E1380EB07005BEA0F1EEA07F8EA01E015307AAE19>I I<01F01338D803FC13FCEA0F1E120E121C123C0038147CEA783E0070143CA2137ED8F07C 1338EA60FCC65A1578000114705BA215F0000314E05BA2EC01C0A2EBC003158014071500 EBE00EA26C6C5A3800F878EB7FE0EB1F801E227AA023>II<13F0D803FC1307D80F1E130F000E141F121C12 3C0038143FD8783E133E1270A2017E137ED8F07C137CEA60FCC65A15FC000114F85BA214 01000314F013E0A2140315E0EA07C0A20003130715C0EBE00F141F0001133F9038F07F80 38007FEFEB1F8FEB001F1500A25C003E133E007E137E147C5C007C5BEA7001495A383807 80D83C1FC7FCEA0FFCEA07F020317AA025>121 D<903807801C90381FE03C90383FF038 017F13789038FFF8F03901F07CE0EBE01F3903C003C09038800780EC0F00C7121E141C14 3C5C5C495AEB07C0495A011EC7FC5B5B4913704913F0000114E0485A38078001390FC003 C0381FF80790383E0F80393C1FFF00127838700FFE38F007F838E001E01E227CA01F>I E /Ft 88 127 df10 DIIII<6C130800E0133800F813F8383E03E0381F 07C0380FDF803803FE006C5A6C5A1320150A76B42A>20 D22 D<001C131C007F137F39FF80FF80A26D13C0A3007F137F001C131C00001300A400011301 01801380A20003130301001300485B00061306000E130E485B485B485B006013601A197D B92A>34 D<017C166048B416F02607C3801401260F81C01403D900E04A5A001E01784A5A 003E6D141F003C013FEC7F80007C90271BE003FFC7FC0218B512BF007891381FFC3E00F8 011CC75A020C14FC5F4C5A16035F4C5A160F5F4CC8FC021C5B00780118133E007C5D16FC 003C01385B003E90383001F0001EEB70036C01E05B903981C007C03907C3800F2601FF00 5BD8007C49C9FC90C748EB07C0033EEB1FF04BEB3C3803FCEBF81C4B497E913A01F001E0 0602030103130703E0497E912607C0071480020F15011580DA1F00018013C04A010F1300 143E5C14FC5C495A13035C495A130F4A0107130149C701C013805B013E16034902031400 01FC6F5A49020113064848913800F00E0003705A49ED3C3849ED1FF06C48ED07C03A437B BD45>37 D<121C127FEAFF80A213C0A3127F121C1200A412011380A2120313005A120612 0E5A5A5A12600A1979B917>39 D<146014E0EB01C0EB0380EB0700130E131E5B5BA25B48 5AA2485AA212075B120F90C7FCA25A121EA2123EA35AA65AB2127CA67EA3121EA2121F7E A27F12077F1203A26C7EA26C7E1378A27F7F130E7FEB0380EB01C0EB00E01460135278BD 20>I<12C07E12707E7E7E120F6C7E6C7EA26C7E6C7EA21378A2137C133C133E131EA213 1F7FA21480A3EB07C0A6EB03E0B2EB07C0A6EB0F80A31400A25B131EA2133E133C137C13 78A25BA2485A485AA2485A48C7FC120E5A5A5A5A5A13527CBD20>I<15301578B3A6007F B812F8B912FCA26C17F8C80078C8FCB3A6153036367BAF41>43 D<121C127FEAFF80A213 C0A3127F121C1200A412011380A2120313005A1206120E5A5A5A12600A19798817>II<121C127FEAFF80A5EA7F00121C0909798817>I<150C151E153EA2 153C157CA2157815F8A215F01401A215E01403A215C01407A21580140FA215005CA2141E 143EA2143C147CA2147814F8A25C1301A25C1303A2495AA25C130FA291C7FC5BA2131E13 3EA2133C137CA2137813F8A25B1201A25B1203A25B1207A25B120FA290C8FC5AA2121E12 3EA2123C127CA2127812F8A25A12601F537BBD2A>IIIII<1538A2157815F8A2140114031407A2140F141F141B 14331473146314C313011483EB030313071306130C131C131813301370136013C01201EA 038013005A120E120C5A123812305A12E0B712F8A3C73803F800AB4A7E0103B512F8A325 397EB82A>I<0006140CD80780133C9038F003F890B5FC5D5D158092C7FC14FC38067FE0 90C9FCABEB07F8EB3FFE9038780F803907E007E090388003F0496C7E12066E7EC87EA281 81A21680A4123E127F487EA490C71300485C12E000605C12700030495A00385C6C130300 1E495A6C6C485A3907E03F800001B5C7FC38007FFCEB1FE0213A7CB72A>II<12301238123E003FB612E0A316C05A168016000070C712060060 140E5D151800E01438485C5D5DC712014A5A92C7FC5C140E140C141C5CA25CA214F0495A A21303A25C1307A2130FA3495AA3133FA5137FA96DC8FC131E233B7BB82A>III<121C127FEAFF80A5EA7F00121CC7FCB212 1C127FEAFF80A5EA7F00121C092479A317>I<121C127FEAFF80A5EA7F00121CC7FCB212 1C127F5A1380A4127F121D1201A412031300A25A1206A2120E5A121812385A1260093479 A317>I<007FB812F8B912FCA26C17F8CCFCAE007FB812F8B912FCA26C17F836167B9F41> 61 D 63 DI<1538A3157CA315FEA34A7EA34A6C7EA202077FEC063FA2020E7FEC 0C1FA2021C7FEC180FA202387FEC3007A202707FEC6003A202C07F1501A2D901807F81A2 49C77F167FA20106810107B6FCA24981010CC7121FA2496E7EA3496E7EA3496E7EA213E0 707E1201486C81D80FFC02071380B56C90B512FEA3373C7DBB3E>I I<913A01FF800180020FEBE003027F13F8903A01FF807E07903A03FC000F0FD90FF0EB03 9F4948EB01DFD93F80EB00FF49C8127F01FE153F12014848151F4848150FA248481507A2 485A1703123F5B007F1601A35B00FF93C7FCAD127F6DED0180A3123F7F001F160318006C 7E5F6C7E17066C6C150E6C6C5D00001618017F15386D6C5CD91FE05C6D6CEB03C0D903FC EB0F80902701FF803FC7FC9039007FFFFC020F13F002011380313D7BBA3C>IIII< DBFF8013C0020FEBF001023F13FC9139FF803F03903A03FC000787D90FF0EB03CF4948EB 00EF4948147F4948143F49C8121F485A4848150F48481507A248481503A2485A1701123F 5B007F1600A448481600AB93B6FCA26C7E9338007FE0EF3FC0A2123F7F121FA26C7EA26C 7EA26C7E6C7E6C6C157F6D7E6D6C14FF6D6C14EFD90FF8EB03C7D903FEEB0783903A00FF C03F0191393FFFFC00020F01F0130002001380383D7CBA41>III<013FB512E0A39039 001FFC00EC07F8B3B3A3123FEA7F80EAFFC0A44A5A1380D87F005B0070131F6C5C6C495A 6C49C7FC380781FC3801FFF038007F80233B7DB82B>IIIIIIIIII<003FB812E0A3D9C003EB001F273E0001FE130348EE01F000781600007017 70A300601730A400E01738481718A4C71600B3B0913807FF80011FB612E0A335397DB83C >IIII<007FB590383FFFFCA3C601F801071380D97FE0D903FCC7FC013FEC 01F06D6C5C5F6D6C5C6D6C13034CC8FC6D6C1306160E6D6C5B6DEB8018163891387FC030 6E6C5A16E06E6C5A91380FF18015FB6EB4C9FC5D14036E7EA26E7F6F7EA24B7E15DF9138 019FF09138038FF8150F91380607FC91380E03FE140C4A6C7EEC38000230804A6D7E14E0 4A6D7E49486D7E130391C76C7E01066E7E130E010C6E7E011C1401013C8101FE822607FF 80010713E0B500E0013FEBFF80A339397EB83E>I<003FB7FCA39039FC0001FE01C01303 49495A003EC7FC003C4A5A5E0038141F00784A5A12704B5A5E006014FF4A90C7FCA24A5A 5DC712074A5AA24A5A5D143F4A5AA24A5A92C8FC5B495AA2495A5C130F4948EB0180A249 5A5C137F495A16034890C7FC5B1203485AEE0700485A495C001F5D48485C5E4848495A49 130FB8FCA329397BB833>90 DI< 3901800180000313033907000700000E130E485B00181318003813380030133000701370 00601360A200E013E0485BA400CE13CE39FF80FF806D13C0A3007F137FA2393F803F8039 0E000E001A1974B92A>II97 DIIII<147E903803FF8090380FC1E0EB1F8790383F0FF0 137EA213FCA23901F803C091C7FCADB512FCA3D801F8C7FCB3AB487E387FFFF8A31C3B7F BA19>IIIIIII<2703F00FF0EB1FE000FFD93FFCEB7FF8913AF03F01E07E903BF1 C01F83803F3D0FF3800FC7001F802603F70013CE01FE14DC49D907F8EB0FC0A2495CA349 5CB3A3486C496CEB1FE0B500C1B50083B5FCA340257EA445>I<3903F00FF000FFEB3FFC ECF03F9039F1C01F803A0FF3800FC03803F70013FE496D7EA25BA35BB3A3486C497EB500 C1B51280A329257EA42E>II<3903F01FE000FFEB7FF89038F1E07E90 39F3801F803A07F7000FC0D803FEEB07E049EB03F04914F849130116FC150016FEA3167F AA16FEA3ED01FCA26DEB03F816F06D13076DEB0FE001F614C09039F7803F009038F1E07E 9038F0FFF8EC1FC091C8FCAB487EB512C0A328357EA42E>II<3807E01F00FFEB7FC0 9038E1E3E09038E387F0380FE707EA03E613EE9038EC03E09038FC0080491300A45BB3A2 487EB512F0A31C257EA421>II<1318A51338A31378A313F8120112031207001FB5FCB6FCA2D801F8 C7FCB215C0A93800FC011580EB7C03017E13006D5AEB0FFEEB01F81A347FB220>IIIII I<003FB512FCA2EB8003D83E0013F8003CEB07F00038EB0FE012300070EB1FC0EC3F8000 60137F150014FE495AA2C6485A495AA2495A495A495AA290387F000613FEA2485A485A00 07140E5B4848130C4848131CA24848133C48C7127C48EB03FC90B5FCA21F247EA325>I< B81280A2290280962A>I126 D E /Fu 27 122 df58 D67 DIII78 D<923807FFC092B512FE0207ECFFC002 1F15F091267FFE0013FC902601FFF0EB1FFF01070180010313C04990C76C7FD91FFC6E6C 7E49486F7E49486F7E01FF8348496F7E48496F1380A248496F13C0A24890C96C13E0A248 19F04982003F19F8A3007F19FC49177FA400FF19FEAD007F19FC6D17FFA3003F19F8A26D 5E6C19F0A26E5D6C19E0A26C6D4B13C06C19806E5D6C6D4B13006C6D4B5A6D6C4B5A6D6C 4B5A6D6C4A5B6D01C001075B6D01F0011F5B010101FE90B5C7FC6D90B65A023F15F80207 15C002004AC8FC030713C047467AC454>II<903801FF E0011F13FE017F6D7E48B612E03A03FE007FF84848EB1FFC6D6D7E486C6D7EA26F7FA36F 7F6C5A6C5AEA00F090C7FCA40203B5FC91B6FC1307013F13F19038FFFC01000313E0000F 1380381FFE00485A5B127F5B12FF5BA35DA26D5B6C6C5B4B13F0D83FFE013EEBFFC03A1F FF80FC7F0007EBFFF86CECE01FC66CEB8007D90FFCC9FC322F7DAD36>97 D99 DIIIII<137C48B4FC4813804813C0A24813E0A56C13C0A26C 13806C1300EA007C90C7FCAAEB7FC0EA7FFFA512037EB3AFB6FCA518467CC520>I108 D<90277F8007FEEC0FFCB59026 3FFFC090387FFF8092B5D8F001B512E002816E4880913D87F01FFC0FE03FF8913D8FC00F FE1F801FFC0003D99F009026FF3E007F6C019E6D013C130F02BC5D02F86D496D7EA24A5D 4A5DA34A5DB3A7B60081B60003B512FEA5572D7CAC5E>I<90397F8007FEB590383FFF80 92B512E0028114F8913987F03FFC91388F801F000390399F000FFE6C139E14BC02F86D7E 5CA25CA35CB3A7B60083B512FEA5372D7CAC3E>II113 D<90387F807FB53881FFE0028313F0028F13F8ED8FFC91389F1FFE000313BE6C 13BC14F8A214F0ED0FFC9138E007F8ED01E092C7FCA35CB3A5B612E0A5272D7DAC2E>I< 90391FFC038090B51287000314FF120F381FF003383FC00049133F48C7121F127E00FE14 0FA215077EA27F01E090C7FC13FE387FFFF014FF6C14C015F06C14FC6C800003806C1580 6C7E010F14C0EB003F020313E0140000F0143FA26C141F150FA27EA26C15C06C141FA26D EB3F8001E0EB7F009038F803FE90B55A00FC5CD8F03F13E026E007FEC7FC232F7CAD2C> III120 DI E end %%EndProlog %%BeginSetup %%Feature: *Resolution 600dpi TeXDict begin %%PaperSize: a4 %%BeginPaperSize: a4 /setpagedevice where { pop 1 dict dup /PageSize [ 595 842 ] put setpagedevice } { statusdict /a4tray known { statusdict begin a4tray end /a4 where { pop a4 } if } { /a4 where { pop a4 } { statusdict /setpage known { statusdict begin 595 842 0 setpage end } if } ifelse } ifelse } ifelse %%EndPaperSize %%EndSetup %%Page: 1 1 1 0 bop -140 -97 a Fu(Nonlo)s(calit)m(y)35 b(of)i(the)h(Densit)m(y)e(F) -9 b(unctional)37 b(for)g(Exc)m(hange)h(and)g(Correlation:)49 b(Ph)m(ysical)36 b(Origins)1276 19 y(and)i(Chemical)e(Consequences)1233 231 y Ft(John)27 b(P)-7 b(.)28 b(P)n(erdew)e(and)h(Matthias)h (Ernzerhof)341 322 y Fs(Dep)l(artment)i(of)d(Physics)i(and)f(Quantum)g (The)l(ory)g(Gr)l(oup,)h(T)-6 b(ulane)28 b(University,)g(New)f(Orle)l (ans,)h(LA)g(70118)1760 513 y Ft(Ale)l(\024)-37 b(s)27 b(Zupan)143 605 y Fs(Dep)l(artment)i(of)e(Physic)l(al)h(and)g(Or)l (ganic)h(Chemistry,)f(Jo)l(\024)-35 b(zef)28 b(Stefan)g(Institute,)g (Jamova)h(39,)e(1000)h(Ljubljana,)f(Slovenia)1723 796 y Ft(Kieron)f(Burk)n(e)854 887 y Fs(Dep)l(artment)j(of)f(Chemistry,)g (R)n(utgers)h(University,)f(Camden,)g(NJ)f(08102)-28 1246 y Fr(Gradien)n(t)40 b(corrections)h(to)e(the)g(lo)r(cal)i(spin)e (densit)n(y)g(appro)n(xi-)-150 1337 y(mation)29 b(for)h(the)e(exc)n (hange-correlation)j(energy)d Fq(E)1392 1345 y Fp(X)o(C)1504 1337 y Fr(are)i(increas-)-150 1429 y(ingly)37 b(useful)g(in)g(quan)n (tum)e(c)n(hemistry)g(and)i(solid)h(state)f(ph)n(ysics.)-150 1520 y(W)-6 b(e)24 b(presen)n(t)f(elemen)n(tary)g(ph)n(ysical)h (argumen)n(ts)g(whic)n(h)g(explain)g(the)-150 1611 y(qualitativ)n(e)k (dep)r(endencies)f(of)h(the)f(exc)n(hange)h(and)f(correlation)i(en-) -150 1703 y(ergies)f(up)r(on)f(the)f(lo)r(cal)j(densit)n(y)-6 b(,)26 b(lo)r(cal)j(spin)d(p)r(olarization,)k(and)d(re-)-150 1794 y(duced)22 b(densit)n(y)h(gradien)n(t.)34 b(The)23 b(nearly)g(lo)r(cal)i(b)r(eha)n(vior)e(of)h(the)f(gen-)-150 1885 y(eralized)33 b(gradien)n(t)g(appro)n(ximation)f(for)h Fq(E)1146 1893 y Fp(X)o(C)1260 1885 y Fr(at)g(v)l(alence-electron)-150 1977 y(densities,)j(due)d(to)h(strong)g(cancellation)h(b)r(et)n(w)n (een)f(the)f(nonlo)r(cali-)-150 2068 y(ties)24 b(of)h(exc)n(hange)e (and)g(correlation,)j(is)e(shared)g(b)n(y)f(the)g(exact)g(linear)-150 2159 y(resp)r(onse)36 b(of)g(the)f(uniform)g(electron)h(gas.)65 b(W)-6 b(e)35 b(further)g(test)h(and)-150 2251 y(dev)n(elop)g(our)h (rationale)h(for)f(the)f(c)n(hemical)h(and)f(solid-state)i(con-)-150 2342 y(sequences)31 b(of)h(gradien)n(t)g(corrections.)52 b(W)-6 b(e)31 b(also)h(partially)g(explain)-150 2433 y(the)21 b(\\conjoin)n(tness")j(b)r(et)n(w)n(een)d(the)h(exc)n(hange)f (energy)h(and)f(the)g(non-)-150 2525 y(in)n(teracting)f(kinetic)g (energy)-6 b(,)21 b(whose)f(generalized)h(gradien)n(t)f(appro)n(x-)-150 2616 y(imation)26 b(is)g(tested)f(here.)35 b(An)25 b(app)r(endix)g (presen)n(ts)g(the)h(full)g(expres-)-150 2707 y(sion)g(for)h(the)e (gradien)n(t-corrected)h(correlation)i(p)r(oten)n(tial.)44 3342 y Fo(I.)h(NONLOCALITY)h(AND)f(ITS)g(PHYSICAL)678 3433 y(ORIGINS)-67 3651 y Ft(Kohn-Sham)48 b(spin)h(densit)n(y)f (functional)h(theory)f([1])h(rou-)-150 3751 y(tinely)33 b(pro)n(vides)e(useful)i(\014rst-principles)f(predictions)g(for)g(the) -150 3850 y(ground-state)24 b(structure)h(of)h(man)n(y-electron)e (systems)h([2].)36 b(F)-7 b(or)-150 3950 y(practical)42 b(applications,)j(the)f(exc)n(hange-correlation)39 b(energy)-150 4049 y Fn(E)-89 4061 y Fp(X)o(C)-6 4049 y Ft([)p Fn(n)67 4061 y Fm(")106 4049 y Fn(;)14 b(n)193 4061 y Fm(#)230 4049 y Ft(])32 b(m)n(ust)g(b)r(e)g(appro)n(ximated.)46 b(The)32 b(lo)r(cal)f(spin)h(den-)-150 4149 y(sit)n(y)20 b(appro)n(ximation)e(\(LSD\))j([1,3])f(has)f(b)r(een)i(used)f (successfully)-150 4249 y(for)28 b(thirt)n(y)g(y)n(ears)f(in)i (solid-state)e(ph)n(ysics.)39 b(Recen)n(tly)-7 b(,)29 b(general-)-150 4348 y(ized)39 b(gradien)n(t)f(appro)n(ximations)f (\(GGA's\))i([4{11])f(ha)n(v)n(e)f(im-)-150 4448 y(pro)n(v)n(ed)23 b(up)r(on)h(the)h(accuracy)d(of)i(LSD,)h(and)f(GGA)h(has)f(b)r(ecome) -150 4548 y(a)38 b(standard)f(metho)r(d)h(of)g(quan)n(tum)g(c)n (hemistry)-7 b(.)68 b(Hybrids)37 b(of)-150 4647 y(GGA's)j(with)f (traditional)g(w)n(a)n(v)n(efunction)f(metho)r(ds)h(suc)n(h)g(as)-150 4747 y(exact)33 b(exc)n(hange)f([12{)o(16])g(or)h(con\014guration)f(in) n(teraction)g([17])-150 4846 y(are)26 b(tan)n(talizingly)h(close)f(to)i (the)f(elusiv)n(e)g(goal)f(of)h(c)n(hemical)g(ac-)-150 4946 y(curacy)38 b(from)h(\014rst)g(principles.)71 b(Here)39 b(w)n(e)f(stress)g(that)i(non-)-150 5046 y(empirical)23 b(GGA's)i(are)e(neither)h(blac)n(k)f(b)r(o)n(xes)g(nor)g(stabs)h(in)g (the)-150 5145 y(dark;)39 b(they)d(can)f(b)r(e)h(understo)r(o)r(d)f (and)g(in)n(tuited.)62 b(Moreo)n(v)n(er,)-150 5245 y(LSD)25 b(can)g(b)r(e)g(understo)r(o)r(d)g(and)g(in)n(tuited)h(in)f(the)g(same) g(w)n(a)n(y)-7 b(,)24 b(as)-150 5345 y(a)j(sp)r(ecial)g(case)g(of)h (GGA.)2125 1184 y(In)h(the)h(Kohn-Sham)e(approac)n(h,)f(the)j (ground-state)d(energy)2042 1283 y(is)g(written)h(as)2333 1488 y Fn(E)2394 1500 y Fl(v)2434 1488 y Ft([)p Fn(n)2507 1500 y Fm(")2545 1488 y Fn(;)14 b(n)2632 1500 y Fm(#)2669 1488 y Ft(])24 b(=)e Fn(T)2852 1500 y Fp(S)2887 1488 y Ft([)p Fn(n)2960 1500 y Fm(")2998 1488 y Fn(;)14 b(n)3085 1500 y Fm(#)3123 1488 y Ft(])19 b(+)3248 1375 y Fk(Z)3344 1488 y Fn(d)3387 1453 y Fj(3)3425 1488 y Fn(r)30 b(n)p Ft(\()p Fi(r)p Ft(\))p Fn(v)s Ft(\()p Fi(r)p Ft(\))2716 1655 y(+)22 b Fn(U)9 b Ft([)p Fn(n)p Ft(])18 b(+)g Fn(E)3127 1667 y Fp(X)o(C)3211 1655 y Ft([)p Fn(n)3284 1667 y Fm(")3322 1655 y Fn(;)c(n)3409 1667 y Fm(#)3447 1655 y Ft(])p Fn(;)485 b Ft(\(1\))2042 1837 y(where)2441 2047 y Fn(U)9 b Ft([)p Fn(n)p Ft(])23 b(=)2724 1991 y(1)p 2724 2028 42 4 v 2724 2104 a(2)2789 1934 y Fk(Z)2886 2047 y Fn(d)2929 2013 y Fj(3)2966 2047 y Fn(r)31 b(d)3077 2013 y Fj(3)3114 2047 y Fn(r)3153 2013 y Fm(0)3215 1991 y Fn(n)p Ft(\()p Fi(r)p Ft(\))p Fn(n)p Ft(\()p Fi(r)3489 1961 y Fm(0)3513 1991 y Ft(\))p 3215 2028 331 4 v 3255 2104 a Fh(j)p Fi(r)19 b Fh(\000)f Fi(r)3458 2080 y Fm(0)3482 2104 y Fh(j)3556 2047 y Fn(:)399 b Ft(\(2\))2042 2284 y(W)-7 b(e)40 b(use)f(atomic)g (units)h(in)g(whic)n(h)g(\026)-42 b Fn(h)42 b Ft(=)h Fn(e)3452 2254 y Fj(2)3532 2284 y Ft(=)f Fn(m)h Ft(=)g(1.)72 b Fn(T)4049 2296 y Fp(S)2042 2383 y Ft(denotes)30 b(the)h(non-in)n (teracting)e(kinetic)i(energy)f(of)g(the)h(Kohn-)2042 2483 y(Sham)37 b(determinan)n(t,)i Fn(v)s Ft(\()p Fi(r)p Ft(\))g(is)e(the)g(external)f(p)r(oten)n(tial,)k Fn(n)f Ft(=)2042 2583 y Fn(n)2092 2595 y Fm(")2150 2583 y Ft(+)19 b Fn(n)2284 2595 y Fm(#)2352 2583 y Ft(the)31 b(ground-state)d(densit)n (y)i(corresp)r(onding)e(to)i Fn(v)s Ft(\()p Fi(r)p Ft(\),)2042 2682 y(and)36 b Fn(E)2273 2694 y Fp(X)o(C)2393 2682 y Ft(accoun)n(ts)g(for)g(exc)n(hange)f(and)h(correlation)f(e\013ects.) 2042 2782 y(Generalized)49 b(gradien)n(t)f(appro)n(ximations)f(to)j (the)g(univ)n(ersal)2042 2882 y(functional)28 b Fn(E)2493 2894 y Fp(X)o(C)2604 2882 y Ft(are)e(of)i(the)g(form)2222 3098 y Fn(E)2288 3064 y Fl(GGA)2283 3119 y Fp(X)o(C)2445 3098 y Ft([)p Fn(n)2518 3110 y Fm(")2556 3098 y Fn(;)14 b(n)2643 3110 y Fm(#)2681 3098 y Ft(])23 b(=)2815 2985 y Fk(Z)2912 3098 y Fn(d)2955 3064 y Fj(3)2992 3098 y Fn(r)31 b(f)9 b Ft(\()p Fn(n)3192 3110 y Fm(")3230 3098 y Fn(;)14 b(n)3317 3110 y Fm(#)3355 3098 y Fn(;)g Fh(r)p Fn(n)3511 3110 y Fm(")3549 3098 y Fn(;)g Fh(r)p Fn(n)3705 3110 y Fm(#)3743 3098 y Ft(\))p Fn(:)180 b Ft(\(3\))2042 3319 y(In)33 b(this)g(article)f(w)n(e)h(fo)r(cus)g(on)g(the)g(P)n (erdew-Burk)n(e-Ernzerhof)2042 3418 y(\(PBE\))f(GGA)h([9].)51 b(This)32 b(functional)h(is)f(a)g(non-empirical)g(ex-)2042 3518 y(tension)23 b(of)h(the)f(lo)r(cal)g(spin-densit)n(y)g(appro)n (ximation,)g(to)g(whic)n(h)2042 3618 y(it)38 b(reduces)f(in)i(the)f (limit)h(where)e Fh(r)p Fn(n)3280 3630 y Fm(")3356 3618 y Ft(and)h Fh(r)p Fn(n)3647 3630 y Fm(#)3723 3618 y Ft(b)r(oth)h(v)-5 b(an-)2042 3717 y(ish.)63 b(The)36 b(principal)g(aim)g(of)g(this)g (article)g(is)g(to)g(explain)g(the)2042 3817 y(ph)n(ysical)26 b(origin)h(of)g(the)h(nonlo)r(calit)n(y)f(or)g(densit)n(y-gradien)n(t)e (de-)2042 3917 y(p)r(endence)36 b(of)f(the)h(GGA.)h(Our)d(argumen)n(ts) h(pro)n(vide)f(a)h(c)n(hec)n(k)2042 4016 y(on)41 b(the)g(construction)f (of)h(GGA's,)k(and)c(insigh)n(ts)f(in)n(to)h(their)2042 4116 y(structure.)46 b(This)31 b(is)g(particularly)e(useful)i(b)r (ecause,)h(while)f(the)2042 4215 y(construction)21 b(of)i(the)f(PBE)g (is)g(v)n(ery)f(simple,)j(the)f(inputs)g(to)f(this)2042 4315 y(construction)d(are)g(not)h(all)g(so)g(easily)f(c)n(hec)n(k)n (ed.)33 b(W)-7 b(e)21 b(also)e(discuss)2042 4415 y(the)25 b(c)n(haracteristic)e(c)n(hemical)i(e\013ects)g(of)g(gradien)n(t)f (corrections)2042 4514 y(\(Section)c(I)r(I\),)g(and)f(presen)n(t)g(n)n (umerical)f(tests)i(and)f(comparisons)2042 4614 y(of)30 b(GGA's)g(for)g(the)g(non-in)n(teracting)e(kinetic,)j(exc)n(hange,)e (and)2042 4714 y(exc)n(hange-correlation)24 b(energies)i(\(Section)i(I) r(I)r(I\).)2125 4813 y(A)g(GGA)g(ma)n(y)f(b)r(e)h(represen)n(ted)e (appro)n(ximately)g(as)2150 5041 y Fn(E)2216 5007 y Fj(GGA)2211 5062 y Fp(X)o(C)2372 5041 y Ft([)p Fn(n)2445 5053 y Fm(")2483 5041 y Fn(;)14 b(n)2570 5053 y Fm(#)2608 5041 y Ft(])23 b(=)2742 4928 y Fk(Z)2839 5041 y Fn(d)2882 5007 y Fj(3)2919 5041 y Fn(r)30 b(n)3036 4924 y Fk(\024\022)3141 5041 y Fh(\000)3234 4985 y Fn(c)p 3216 5022 73 4 v 3216 5098 a(r)3253 5110 y Fl(s)3299 4924 y Fk(\023)3374 5041 y Fn(F)3427 5053 y Fp(X)o(C)3510 5041 y Ft(\()p Fn(r)3579 5053 y Fl(s)3615 5041 y Fn(;)14 b(\020)6 b(;)14 b(s)p Ft(\))3802 4924 y Fk(\025)3847 5041 y Fn(;)108 b Ft(\(4\))2042 5285 y(where)42 b Fn(c)48 b Ft(=)f(3)p Fn(\013=)p Ft(4)p Fn(\031)j Ft(=)e(0)p Fn(:)p Ft(458165)39 b(and)j Fn(\013)48 b Ft(=)g(\(9)p Fn(\031)s(=)p Ft(4\))3868 5255 y Fj(1)p Fl(=)p Fj(3)4020 5285 y Ft(=)2042 5385 y(1)p Fn(:)p Ft(91916.)34 b(Here)1946 5645 y(1)p eop %%Page: 2 2 2 1 bop 480 -23 a Fn(r)517 -11 y Fl(s)553 -23 y Ft(\()p Fi(r)p Ft(\))24 b(=)768 -140 y Fk(\022)889 -79 y Ft(3)p 839 -42 142 4 v 839 34 a(4)p Fn(\031)s(n)991 -140 y Fk(\023)1052 -122 y Fj(1)p Fl(=)p Fj(3)1786 -23 y Ft(\(5\))-150 205 y(is)37 b(the)g(lo)r(cal)g(densit)n(y)f(parameter)g(or)g(Seitz)h (radius)f(\(roughly)-150 305 y(the)28 b(mean)f(in)n(terelectronic)g (spacing\),)541 517 y Fn(\020)6 b Ft(\()p Fi(r)p Ft(\))24 b(=)808 461 y Fn(n)858 473 y Fm(")914 461 y Fh(\000)18 b Fn(n)1047 473 y Fm(#)p 808 498 278 4 v 922 574 a Fn(n)1786 517 y Ft(\(6\))-150 719 y(is)27 b(the)h(lo)r(cal)f(relativ)n(e)g(spin)h (p)r(olarization,)e(and)380 940 y Fn(s)p Ft(\()p Fi(r)p Ft(\))e(=)655 884 y Fh(jr)p Fn(n)p Fh(j)p 643 921 190 4 v 643 997 a Ft(2)p Fn(k)728 1009 y Fl(F)783 997 y Fn(n)866 940 y Ft(=)990 884 y(3)p 963 921 95 4 v 963 997 a(2)p Fn(\013)1068 940 y Fh(jr)p Fn(r)1197 952 y Fl(s)1234 940 y Fh(j)529 b Ft(\(7\))-150 1154 y(is)27 b(the)h(lo)r(cal)f (inhomogeneit)n(y)g(parameter)f(or)g(reduced)i(densit)n(y)-150 1254 y(gradien)n(t,)41 b(whic)n(h)e(measures)f(ho)n(w)h(fast)g(and)g (ho)n(w)g(m)n(uc)n(h)g(the)-150 1354 y(densit)n(y)27 b(v)-5 b(aries)26 b(on)g(the)i(scale)e(of)h(the)g(lo)r(cal)f(F)-7 b(ermi)27 b(w)n(a)n(v)n(elength)-150 1453 y(2)p Fn(\031)s(=k)27 1465 y Fl(F)105 1453 y Ft(=)22 b(2)p Fn(\031)s(r)321 1465 y Fl(s)357 1453 y Fn(=\013)p Ft(.)36 b(The)26 b(factor)e(\()p Fh(\000)p Fn(c=r)1127 1465 y Fl(s)1163 1453 y Ft(\))i(in)f(the)h(in)n (tegrand)e(of)-150 1553 y(Eq.)k(\(4\))h(is)g(the)g(exc)n(hange)e (energy)g(p)r(er)i(particle)f Fn(")1475 1565 y Fp(X)1520 1553 y Ft(\()p Fn(r)1589 1565 y Fl(s)1625 1553 y Fn(;)14 b(\020)31 b Ft(=)25 b(0\))-150 1653 y(of)d(a)f(spin-unp)r(olarized)g (uniform)h(electron)f(gas.)33 b(The)22 b(enhance-)-150 1752 y(men)n(t)30 b(factor)f Fn(F)355 1764 y Fp(X)o(C)466 1752 y Fh(\025)e Ft(1)i(accoun)n(ts)g(for)h(the)g(e\013ects)g(of)g (inhomo-)-150 1852 y(geneit)n(y)-7 b(,)27 b(spin-p)r(olarization,)f (and)h(correlation.)35 b(It)28 b(is)g(the)g(ana-)-150 1951 y(log)k(of)g(3)p Fn(\013=)p Ft(2)g(in)h(Slater's)f(X)p Fn(\013)h Ft(metho)r(d)g([18],)g(and,)h(lik)n(e)e(3)p Fn(\013=)p Ft(2,)-150 2051 y(its)e(v)-5 b(ariation)30 b(is)g(b)r(ounded)g(and)g(plottable.)45 b Fn(F)1355 2063 y Fp(X)o(C)1439 2051 y Ft(\()p Fn(r)1508 2063 y Fl(s)1544 2051 y Fn(;)14 b(\020)6 b(;)14 b(s)28 b Ft(=)f(0\))-150 2151 y(reco)n(v)n(ers)f(the)j(lo)r(cal)f(spin-densit)n(y)g(\(LSD\))i (appro)n(ximation)d([1].)-150 2250 y(W)-7 b(e)35 b(decomp)r(ose)g Fn(F)479 2262 y Fp(X)o(C)598 2250 y Ft(in)n(to)f(an)h(exc)n(hange)f (and)h(a)f(correlation)-150 2350 y(con)n(tribution)297 2528 y Fn(F)350 2540 y Fp(X)o(C)456 2528 y Ft(=)23 b Fn(F)597 2540 y Fp(X)642 2528 y Ft(\()p Fn(\020)6 b(;)14 b(s)p Ft(\))19 b(+)g Fn(F)980 2540 y Fp(C)1024 2528 y Ft(\()p Fn(r)1093 2540 y Fl(s)1129 2528 y Fn(;)14 b(\020)6 b(;)14 b(s)p Ft(\))p Fn(;)447 b Ft(\(8\))-150 2707 y(where)30 b Fn(F)146 2719 y Fp(X)220 2707 y Fn(>)f Ft(0,)i Fn(F)463 2719 y Fp(C)536 2707 y Fn(>)e Ft(0,)i(and)g Fn(F)944 2719 y Fp(C)1017 2707 y Fh(!)e Ft(0)h(as)g Fn(r)1343 2719 y Fl(s)1408 2707 y Fh(!)f Ft(0.)47 b(Clearly)-150 2806 y Fn(F)-97 2818 y Fp(X)-52 2806 y Ft(\()p Fn(\020)36 b Ft(=)30 b(0)p Fn(;)14 b(s)28 b Ft(=)h(0\))h(=)f(1.)48 b(GGA's)32 b(t)n(ypically)f(also)f(include)i Fh(r)p Fn(\020)-150 2906 y Ft(con)n(tributions)j(to)h(the)h(exc)n(hange)e(energy)-7 b(,)37 b(whic)n(h)f(v)-5 b(anish)36 b(for)-150 3005 y(an)28 b(unp)r(olarized)f(\()p Fn(\020)k Ft(=)24 b(0\))k(or)f(fully-p)r (olarized)g(\()p Fn(\020)k Ft(=)24 b(1\))k(system)-150 3105 y(and)i(are)e(neglected)i(in)g(Eq.)f(\(4\))h(and)g(the)g(rest)f (of)h(this)g(section)-150 3205 y(to)d(simplify)i(our)d(qualitativ)n(e)h (discussion.)-67 3304 y(The)f(full)g(nonlo)r(calit)n(y)f(of)h Fn(E)824 3316 y Fp(X)o(C)907 3304 y Ft([)p Fn(n)980 3316 y Fm(")1018 3304 y Fn(;)14 b(n)1105 3316 y Fm(#)1143 3304 y Ft(])26 b(cannot)g(b)r(e)g(captured)-150 3404 y(b)n(y)45 b(Eqs.)g(\(3\))h(or)e(\(4\).)91 b(Because)45 b(of)g(its)h(simple)f(semi-lo)r(cal)-150 3504 y(form,)38 b(GGA)f(\(lik)n(e)f(LSD\))h(can)f(b)r(e)h(at)f(b)r(est)h(a)f(con)n (trolled)f(ex-)-150 3603 y(trap)r(olation)20 b(a)n(w)n(a)n(y)e(from)i (the)h(limit)h(of)e(slo)n(wly-v)-5 b(arying)18 b(densit)n(y)-7 b(.)-150 3703 y(But)25 b(this)g(restricted)g(form)f(greatly)g (simpli\014es)h(the)g(deriv)-5 b(ation,)-150 3802 y(c)n (haracterization,)41 b(and)f(ph)n(ysical)f(understanding)h(of)g(nonlo-) -150 3902 y(calit)n(y)34 b(and)f(its)i(c)n(haracteristic)d(e\013ects,)k (and)e(eases)f(the)h(lab)r(or)-150 4002 y(required)f(for)h(practical)f (computation.)57 b(The)34 b(LSD)h(enhance-)-150 4101 y(men)n(t)30 b Fn(F)115 4113 y Fp(X)o(C)198 4101 y Ft(\()p Fn(r)267 4113 y Fl(s)304 4101 y Fn(;)14 b(\020)6 b(;)14 b(s)26 b Ft(=)g(0\))j(is)h(unique)f(in)h(principle,)g(since)g(there) -150 4201 y(is)g(a)f(p)r(ossible)g(system)h(\(the)g(uniform)g(electron) f(gas\))g(in)g(whic)n(h)-150 4301 y Fn(r)-113 4313 y Fl(s)-46 4301 y Ft(and)i Fn(\020)38 b Ft(are)31 b(constan)n(t)f(and)h (th)n(us)h(for)f(whic)n(h)g(LSD)h(is)f(exact.)-150 4400 y(A)n(t)g(least)f(in)h(this)f(sense,)h(there)g(is)f(no)g(unique)h(GGA,) g(since)f Fn(r)1856 4412 y Fl(s)-150 4500 y Ft(and)d Fn(s)c Ft(=)g(\(3)p Fn(=)p Ft(2)p Fn(\031)s Ft(\))401 4470 y Fj(1)p Fl(=)p Fj(3)505 4500 y Fh(jr)p Fn(r)634 4512 y Fl(s)670 4500 y Fh(j)28 b Ft(cannot)f(b)r(oth)h(b)r(e)g(constan) n(t,)e(except)-150 4599 y(in)h(the)g(limit)g Fn(s)c Fh(!)g Ft(0.)36 b(Our)26 b(conserv)-5 b(ativ)n(e)25 b(philosoph)n(y)g(of)i (GGA)-150 4699 y(construction)k(is)g(to)g(retain)g(all)h(kno)n(wn)f (correct)f(formal)g(prop-)-150 4799 y(erties)35 b(of)g(LSD,)h(while)f (adding)g(others)f([19,20].)58 b(Among)35 b(the)-150 4898 y(w)n(elter)29 b(of)i(p)r(ossible)e(conditions)h(whic)n(h)g(could) g(b)r(e)g(imp)r(osed)h(to)-150 4998 y(construct)k(a)g(GGA,)h(the)g (most)f(natural)g(and)g(imp)r(ortan)n(t)g(are)-150 5098 y(those)26 b(already)f(satis\014ed)h(b)n(y)g(LSD,)h(or)f(b)n(y)g(the)h (real-space)d(con-)-150 5197 y(struction)j(of)h(PW91.)-67 5297 y(The)72 b(P)n(erdew-W)-7 b(ang)70 b(1991)g(\(PW91\))i ([7,8,10,11])e(and)-150 5396 y(P)n(erdew-Burk)n(e-Ernzerhof)39 b(\(PBE\))44 b([8,9])f(GGA's)h(construct)2042 -83 y(the)60 b(enhancemen)n(t)f(factor)g Fn(F)3072 -71 y Fp(X)o(C)3155 -83 y Ft(\()p Fn(r)3224 -71 y Fl(s)3260 -83 y Fn(;)14 b(\020)6 b(;)14 b(s)p Ft(\))60 b(non-empirically)-7 b(.)2042 17 y(Both)29 b(b)r(egin)h(from)g(accurate)e(Quan)n(tum)i(Mon)n(te)f (Carlo)g(calcu-)2042 116 y(lations)24 b(for)g(the)h(energy)e(of)i(the)g (uniform)g(electron)f(gas.)34 b(PW91)2042 216 y(relies)21 b(further)g(up)r(on)h(the)g(densit)n(y-gradien)n(t)d(expansion)i(for)g (the)2042 315 y(exc)n(hange-correlation)36 b(hole)41 b(and)f(conserving)f(cuto\013s)i(of)f(its)2042 415 y(spurious)20 b(long-range)e(parts,)j(while)g(PBE)f(relies)g(up)r(on)h(the)g(gra-) 2042 515 y(dien)n(t)e(co)r(e\016cien)n(t)g Fn(C)2681 527 y Fp(C)2725 515 y Ft(\()p Fn(r)2794 527 y Fl(s)2853 515 y Ft(=)k(0\))c(for)f(the)i(correlation)d(energy)g(and)2042 614 y(a)29 b(few)g(exact)g(limits.)43 b(In)29 b(the)h(\\GGA)g(made)f (simple")g(of)g(PBE,)2042 714 y(all)d(parameters)f(other)h(than)h (those)f(in)h(LSD)g(are)f(fundamen)n(tal)2042 814 y(constan)n(ts.)61 b(Figures)35 b(1)h(and)g(2)f(displa)n(y)h(the)g(PBE)f(result)h(for)2042 913 y Fn(F)2095 925 y Fp(X)o(C)2178 913 y Ft(\()p Fn(r)2247 925 y Fl(s)2284 913 y Fn(;)14 b(\020)6 b(;)14 b(s)p Ft(\))30 b(in)g(the)h(ph)n(ysical)e(range)f(0)f Fh(\024)g Fn(s)3522 892 y(<)3522 938 y Fh(\030)3613 913 y Ft(3)j([21].)43 b(\(Core)2042 1013 y(electrons)20 b(ha)n(v)n(e)h(0)2632 992 y Fn(<)2632 1038 y Fh(\030)2720 1013 y Fn(s)2782 992 y(<)2782 1038 y Fh(\030)2870 1013 y Ft(1;)i Fn(s)e Ft(div)n(erges)f(in)i(the)g(ev)-5 b(anescen)n(t)21 b(tail)2042 1112 y(of)j(the)g(densit)n(y)g(for)g(a)f(\014nite)i(system.\))36 b(PW91)23 b(is)h(almost)f(indis-)2042 1212 y(tinguishable)f(from)g(PBE) f(on)h(the)h(scale)f(of)g(Fig.)g(1,)i(as)d(sho)n(wn)h(in)2042 1312 y(Ref.)33 b([9].)52 b(The)33 b(PBE)e(gradien)n(t)h(corrections)e (signi\014can)n(tly)i(re-)2042 1411 y(duce)h([9,22])e(the)i(LSD)g(o)n (v)n(erbinding)f(of)g(molecules,)i(correctly)2042 1511 y(describ)r(e)i(the)h(h)n(ydrogen)e(b)r(ond)i(in)g(ice)f([23],)j(and)d (ev)n(en)g(yield)2042 1611 y(realistic)j(binding)h(energy)f(curv)n(es)g (for)h(the)g(rare-gas)e(dimers)2042 1710 y([22,24],)26 b(whic)n(h)h(other)g(p)r(opular)g(GGA's)h(do)g(not)f(bind.)2042 1839 y 15476842 15476842 0 0 37298257 37298257 startTexFig 2042 1839 a %%BeginDocument: fig1.eps 80 dict begin /s {stroke} def /l {lineto} def /m {moveto} def /t {translate} def /sw {stringwidth} def /r {rotate} def /rl {roll} def /R {repeat} def /d {rlineto} def /rm {rmoveto} def /gr {grestore} def /f {eofill} def /c {setrgbcolor} def /lw {setlinewidth} def /sd {setdash} def /cl {closepath} def /sf {scalefont setfont} def /black {0 setgray} def /box {m dup 0 exch d exch 0 d 0 exch neg d cl} def /NC{systemdict begin initclip end}def/C{NC box clip newpath}def /bl {box s} def /bf {box f} def /Y { 0 exch d} def /X { 0 d} def /mp {newpath /y exch def /x exch def} def /side {[w .77 mul w .23 mul] .385 w mul sd w 0 l currentpoint t -144 r} def /mr {mp x y w2 0 360 arc} def /m24 {mr s} def /m20 {mr f} def /mb {mp x y w2 add m w2 neg 0 d 0 w neg d w 0 d 0 w d cl} def /mt {mp x y w2 add m w2 neg w neg d w 0 d cl} def /m21 {mb f} def /m25 {mb s} def /m22 {mt f} def /m26 {mt s} def /m23 {mp x y w2 sub m w2 w d w neg 0 d cl f} def /m27 {mp x y w2 add m w3 neg w2 neg d w3 w2 neg d w3 w2 d cl s} def /m28 {mp x w2 sub y w2 sub w3 add m w3 0 d 0 w3 neg d w3 0 d 0 w3 d w3 0 d 0 w3 d w3 neg 0 d 0 w3 d w3 neg 0 d 0 w3 neg d w3 neg 0 d cl s } def /m29 {mp gsave x w2 sub y w2 add w3 sub m currentpoint t 4 {side} repeat cl fill gr} def /m30 {mp gsave x w2 sub y w2 add w3 sub m currentpoint t 5 {side} repeat s gr} def /m31 {mp x y w2 sub m 0 w d x w2 sub y m w 0 d x w2 sub y w2 add m w w neg d x w2 sub y w2 sub m w w d s} def /m2 {mp x y w2 sub m 0 w d x w2 sub y m w 0 d s} def /m5 {mp x w2 sub y w2 sub m w w d x w2 sub y w2 add m w w neg d s} def /DP {/PT exch def gsave 47.2 47.2 scale PT 1 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < AA AA 55 55 AA AA 55 55 AA AA 55 55 AA AA 55 55 AA AA 55 55 AA AA 55 55 AA AA 55 55 AA AA 55 55 > } image } if PT 2 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < BB BB EE EE BB BB EE EE BB BB EE EE BB BB EE EE BB BB EE EE BB BB EE EE BB BB EE EE BB BB EE EE > } image } if PT 3 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < FF FF BB BB FF FF EE EE FF FF BB BB FF FF EE EE FF FF BB BB FF FF EE EE FF FF BB BB FF FF EE EE > } image } if PT 4 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < DF DF BF BF 7F 7F FE FE FD FD FB FB F7 F7 EF EF DF DF BF BF 7F 7F FE FE FD FD FB FB F7 F7 EF EF > } image } if PT 5 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < 7F 7F BF B F DF DF EF EF F7 F7 FB FB FD FD FE FE 7F 7F BF BF DF DF EF EF F7 F7 FB FB FD FD FE FE > } image } if PT 6 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB > } image } if PT 7 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < FF FF FF FF FF FF 00 00 FF FF FF FF FF FF 00 00 FF FF FF FF FF FF 00 00 FF FF FF FF FF FF 00 00 > } image } if PT 8 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < EE EE 47 47 83 83 C5 C5 EE EE 5C 5C 38 38 74 74 EE EE 47 47 83 83 C5 C5 EE EE 5C 5C 38 38 74 74 > } image } if PT 9 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < EF EF EF EF D7 D7 38 38 FE FE FE FE 7D 7D 83 83 EF EF EF EF D7 D7 38 38 FE FE FE FE 7D 7D 83 83 > } image } if PT 10 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < EF EF EF EF EF EF 00 00 FE FE FE FE FE FE 00 00 EF EF EF EF EF EF 00 00 FE FE FE FE FE FE 00 00 > } image } if PT 11 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < F7 F7 B6 B6 D5 D5 E3 E3 D5 D5 B6 B6 F7 F7 FF FF 7F 7F 6B 6B 5D 5D 3E 3E 5D 5D 6B 6B 7F 7F FF FF > } image } if PT 12 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < E3 E3 DD DD BE BE BE BE BE BE DD DD E3 E3 FF FF 3E 3E DD DD EB EB EB EB EB EB DD DD 3E 3E FF FF > } image } if PT 13 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < FE FE 7D 7D BB BB D7 D7 EF EF D7 D7 BB BB 7D 7D FE FE 7D 7D BB BB D7 D7 EF EF D7 D7 BB BB 7D 7D > } image } if PT 14 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < 00 00 EE EF EE EF EE EF 0E E0 EE EE EE EE EE EE 00 EE FE EE FE EE FE EE 00 00 FE EF FE EF FE EF > } image } if PT 15 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < DD DD AA AA DD DD FF FF 77 77 AA AA 77 77 FF FF DD DD AA AA DD DD FF FF 77 77 AA AA 77 77 FF FF > } image } if PT 16 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < F1 F1 EE EE 1F 1F FF FF F1 F1 EE EE 1F 1F FF FF F1 F1 EE EE 1F 1F FF FF F1 F1 EE EE 1F 1F FF FF > } image } if PT 17 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < EE EE DD DD BB BB FF FF EE EE DD DD BB BB FF FF EE EE DD DD BB BB FF FF EE EE DD DD BB BB FF FF > } image } if PT 18 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < BB BB DD DD EE EE FF FF BB BB DD DD EE EE FF FF BB BB DD DD EE EE FF FF BB BB DD DD EE EE FF FF > } image } if PT 19 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < 1F FC 67 F3 7B EF BD DE BD DE DE BD E6 B3 F8 0F E6 B3 DE BD BD DE BD DE 7B EF 67 F3 1F FC 7F FF > } image } if PT 20 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < DD DD EE EE EE EE EE EE DD DD BB BB BB BB BB BB DD DD EE EE EE EE EE EE DD DD BB BB BB BB BB BB > } image } if PT 21 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < 0E 0E EF EF EF EF EF EF E0 E0 FE FE FE FE FE FE 0E 0E EF EF EF EF EF EF E0 E0 FE FE FE FE FE FE > } image } if PT 22 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < 70 70 F7 F7 F7 F7 F7 F7 07 07 7F 7F 7F 7F 7F 7F 70 70 F7 F7 F7 F7 F7 F7 07 07 7F 7F 7F 7F 7F 7F > } image } if PT 23 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < AA AA 55 55 A9 A9 D1 D1 E1 E1 D1 D1 A9 A9 55 55 AA AA 55 55 A9 A9 D1 D1 E1 E1 D1 D1 A9 A9 55 55 > } image } if PT 24 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < FF FE FF FC EA A8 D5 54 EA A8 D5 54 E8 28 D4 54 E8 E8 D4 D4 E8 EA 54 D5 A8 EA 54 D5 00 C0 00 80 > } image } if PT 25 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < FF FE FF FC FF F8 FF F0 F0 00 F0 00 F0 20 F0 60 F0 E0 F1 E0 F3 E0 F0 00 E0 00 C0 00 80 00 00 00 > } image } if gr } def /FA { /PT exch def gsave clip 0 0 translate 1 1 54 { 1 sub 47.2 mul /Xcurr exch def 1 1 74 { 1 sub 47.2 mul /Ycurr exch def gsave Xcurr Ycurr translate PT DP gr } for } for gr } def /reencdict 24 dict def /ReEncode {reencdict begin /nco&na exch def /nfnam exch def /basefontname exch def /basefontdict basefontname findfont def /newfont basefontdict maxlength dict def basefontdict {exch dup /FID ne {dup /Encoding eq {exch dup length array copy newfont 3 1 roll put} {exch newfont 3 1 roll put} ifelse} {pop pop} ifelse } forall newfont /FontName nfnam put nco&na aload pop nco&na length 2 idiv {newfont /Encoding get 3 1 roll put} repeat nfnam newfont definefont pop end } def /accvec [ 176 /agrave 181 /Agrave 190 /acircumflex 192 /Acircumflex 201 /adieresis 204 /Adieresis 209 /ccedilla 210 /Ccedilla 211 /eacute 212 /Eacute 213 /egrave 214 /Egrave 215 /ecircumflex 216 /Ecircumflex 217 /edieresis 218 /Edieresis 219 /icircumflex 220 /Icircumflex 221 /idieresis 222 /Idieresis 223 /ntilde 224 /Ntilde 226 /ocircumflex 228 /Ocircumflex 229 /odieresis 230 /Odieresis 231 /ucircumflex 236 /Ucircumflex 237 /udieresis 238 /Udieresis 239 /aring 242 /Aring 243 /ydieresis 244 /Ydieresis 246 /aacute 247 /Aacute 252 /ugrave 253 /Ugrave] def /Times-Roman /Times-Roman accvec ReEncode /Times-Italic /Times-Italic accvec ReEncode /Times-Bold /Times-Bold accvec ReEncode /Times-BoldItalic /Times-BoldItalic accvec ReEncode /Helvetica /Helvetica accvec ReEncode /Helvetica-Oblique /Helvetica-Oblique accvec ReEncode /Helvetica-Bold /Helvetica-Bold accvec ReEncode /Helvetica-BoldOblique /Helvetica-BoldOblique accvec ReEncode /Courier /Courier accvec ReEncode /Courier-Oblique /Courier-Oblique accvec ReEncode /Courier-Bold /Courier-Bold accvec ReEncode /Courier-BoldOblique /Courier-BoldOblique accvec ReEncode /oshow {gsave [] 0 sd true charpath stroke gr} def /stwn { /fs exch def /fn exch def /text exch def fn findfont fs sf text sw pop xs add /xs exch def} def /stwb { /fs exch def /fn exch def /nbas exch def /textf exch def textf length /tlen exch def nbas tlen gt {/nbas tlen def} if fn findfont fs sf textf dup length nbas sub nbas getinterval sw pop neg xs add /xs exch def} def /accspe [ 65 /plusminus 66 /bar 67 /existential 68 /universal 69 /exclam 70 /numbersign 71 /greater 72 /question 73 /integral 74 /colon 75 /semicolon 76 /less 77 /bracketleft 78 /bracketright 79 /greaterequal 80 /braceleft 81 /braceright 82 /radical 83 /spade 84 /heart 85 /diamond 86 /club 87 /lessequal 88 /multiply 89 /percent 90 /infinity 48 /circlemultiply 49 /circleplus 50 /emptyset 51 /lozenge 52 /bullet 53 /arrowright 54 /arrowup 55 /arrowleft 56 /arrowdown 57 /arrowboth 48 /degree 44 /comma 43 /plus 45 /angle 42 /angleleft 47 /divide 61 /notequal 40 /equivalence 41 /second 97 /approxequal 98 /congruent 99 /perpendicular 100 /partialdiff 101 /florin 102 /intersection 103 /union 104 /propersuperset 105 /reflexsuperset 106 /notsubset 107 /propersubset 108 /reflexsubset 109 /element 110 /notelement 111 /gradient 112 /logicaland 113 /logicalor 114 /arrowdblboth 115 /arrowdblleft 116 /arrowdblup 117 /arrowdblright 118 /arrowdbldown 119 /ampersand 120 /omega1 121 /similar 122 /aleph ] def /Symbol /Special accspe ReEncode gsave .25 .25 scale gsave 0 0 t black [] 0 sd 1 lw 1587 1814 454 227 bl 1587 1814 454 227 C NC 454 227 m 1814 Y s 488 227 m -34 X s 471 318 m -17 X s 471 408 m -17 X s 471 499 m -17 X s 488 590 m -34 X s 471 680 m -17 X s 471 771 m -17 X s 471 862 m -17 X s 488 953 m -34 X s 471 1043 m -17 X s 471 1134 m -17 X s 471 1225 m -17 X s 488 1315 m -34 X s 471 1406 m -17 X s 471 1497 m -17 X s 471 1588 m -17 X s 488 1678 m -34 X s 471 1769 m -17 X s 471 1860 m -17 X s 471 1950 m -17 X s 488 2041 m -34 X s /xs 0 def (1) /Times-Roman 86 stwn gsave 408 198 t 0 r xs neg 0 t 0 0 m /Times-Roman findfont 86 sf 0 0 m (1) show gr /xs 0 def (1.2) /Times-Roman 86 stwn gsave 408 561 t 0 r xs neg 0 t 0 0 m /Times-Roman findfont 86 sf 0 0 m (1.2) show gr /xs 0 def (1.4) /Times-Roman 86 stwn gsave 408 924 t 0 r xs neg 0 t 0 0 m /Times-Roman findfont 86 sf 0 0 m (1.4) show gr /xs 0 def (1.6) /Times-Roman 86 stwn gsave 408 1287 t 0 r xs neg 0 t 0 0 m /Times-Roman findfont 86 sf 0 0 m (1.6) show gr /xs 0 def (1.8) /Times-Roman 86 stwn gsave 408 1650 t 0 r xs neg 0 t 0 0 m /Times-Roman findfont 86 sf 0 0 m (1.8) show gr /xs 0 def (2) /Times-Roman 86 stwn gsave 408 2013 t 0 r xs neg 0 t 0 0 m /Times-Roman findfont 86 sf 0 0 m (2) show gr 454 227 m 1587 X s 454 261 m -34 Y s 559 244 m -17 Y s 665 244 m -17 Y s 771 244 m -17 Y s 877 244 m -17 Y s 983 261 m -34 Y s 1089 244 m -17 Y s 1194 244 m -17 Y s 1300 244 m -17 Y s 1406 244 m -17 Y s 1512 261 m -34 Y s 1618 244 m -17 Y s 1724 244 m -17 Y s 1830 244 m -17 Y s 1935 244 m -17 Y s 2041 261 m -34 Y s /xs 0 def (0) /Times-Roman 86 stwn gsave 454 147 t 0 r xs 2 div neg 0 t 0 0 m /Times-Roman findfont 86 sf 0 0 m (0) show gr /xs 0 def (1) /Times-Roman 86 stwn gsave 983 147 t 0 r xs 2 div neg 0 t 0 0 m /Times-Roman findfont 86 sf 0 0 m (1) show gr /xs 0 def (2) /Times-Roman 86 stwn gsave 1512 147 t 0 r xs 2 div neg 0 t 0 0 m /Times-Roman findfont 86 sf 0 0 m (2) show gr /xs 0 def (3) /Times-Roman 86 stwn gsave 2041 147 t 0 r xs 2 div neg 0 t 0 0 m /Times-Roman findfont 86 sf 0 0 m (3) show gr 1587 1814 454 227 C 2268 2268 0 0 C /xs 0 def (s) /Times-Roman 120 stwn gsave 2041 82 t 0 r xs neg 0 t 0 0 m /Times-Roman findfont 120 sf 0 0 m (s) show gr 1587 1814 454 227 C 2268 2268 0 0 C 1587 1814 454 227 C 2268 2268 0 0 C gsave 1353 1769 t 0 r 0 0 m /Times-Roman findfont 120 sf 0 0 m (F) show currentpoint pop 0 t /Times-Roman findfont 84 sf 0 -40 m (xc) show currentpoint pop 0 t /Times-Roman findfont 120 sf 0 0 m (\(r) show currentpoint pop 0 t /Times-Roman findfont 84 sf 0 -40 m (s) show currentpoint pop 0 t /Times-Roman findfont 120 sf 0 0 m (,) show currentpoint pop 0 t /Symbol findfont 120 sf 0 0 m (z) show currentpoint pop 0 t /Times-Roman findfont 120 sf 0 0 m (=0,s\)) show gr 1587 1814 454 227 C 3 lw 454 227 m 26 1 d 27 3 d 26 5 d 26 7 d 27 8 d 26 11 d 27 12 d 26 14 d 27 15 d 26 17 d 27 18 d 26 19 d 27 21 d 26 21 d 27 22 d 26 23 d 26 23 d 27 24 d 26 24 d 27 25 d 26 24 d 27 25 d 26 25 d 27 24 d 26 25 d 27 24 d 26 24 d 26 24 d 27 24 d 26 23 d 27 23 d 26 22 d 27 22 d 26 21 d 27 21 d 26 21 d 27 19 d 26 20 d 27 19 d 26 18 d 26 18 d 27 18 d 26 17 d 27 16 d 26 16 d 27 16 d 26 15 d 27 15 d 26 14 d 27 14 d 26 13 d 27 13 d 26 13 d 26 12 d 27 12 d 26 11 d 27 11 d 26 11 d 27 10 d 26 11 d s 454 581 m 79 X 26 1 d 27 X 26 1 d 27 1 d 26 2 d 27 3 d 26 3 d 27 4 d 26 5 d 27 7 d 26 7 d 27 8 d 26 10 d 26 10 d 27 11 d 26 13 d 27 13 d 26 14 d 27 15 d 26 16 d 27 16 d 26 16 d 27 17 d 26 17 d 26 18 d 27 18 d 26 17 d 27 18 d 26 18 d 27 18 d 26 17 d 27 18 d 26 17 d 27 17 d 26 17 d 27 16 d 26 17 d 26 15 d 27 16 d 26 15 d 27 15 d 26 15 d 27 14 d 26 14 d 27 13 d 26 14 d 27 12 d 26 13 d 27 12 d 26 12 d 26 11 d 27 12 d 26 10 d 27 11 d 26 10 d 27 10 d 26 10 d s 454 962 m 185 X 26 -1 d 53 X 27 -1 d 26 -1 d 27 X 26 -1 d 79 X 27 1 d 26 X 27 2 d 26 2 d 27 2 d 26 3 d 27 4 d 26 4 d 27 6 d 26 5 d 26 6 d 27 7 d 26 8 d 27 8 d 26 8 d 27 9 d 26 9 d 27 10 d 26 9 d 27 10 d 26 10 d 27 11 d 26 10 d 26 11 d 27 10 d 26 11 d 27 10 d 26 11 d 27 10 d 26 10 d 27 11 d 26 10 d 27 10 d 26 9 d 27 10 d 26 10 d 26 9 d 27 9 d 26 9 d 27 9 d 26 8 d 27 9 d 26 8 d s 454 1354 m 132 X 26 -1 d 27 X 26 -1 d 27 -1 d 23 -2 d 3 X 22 -2 d 5 X 21 -2 d 5 -1 d 21 -2 d 6 -1 d 21 -2 d 5 -1 d 22 -3 d 5 -1 d 22 -4 d 4 X 26 -5 d 27 -6 d 26 -5 d 27 -6 d 26 -6 d 27 -6 d 26 -5 d 27 -6 d 26 -6 d 27 -5 d 26 -5 d 22 -3 d 4 -1 d 22 -3 d 5 -1 d 20 -3 d 6 X 20 -2 d 7 -1 d 19 -2 d 7 X 20 -2 d 7 X 19 -1 d 27 X 7 -1 d 20 X 6 1 d 27 X 21 1 d 5 X 22 2 d 5 X 22 2 d 4 X 23 2 d 3 X 27 3 d 26 4 d 27 3 d 26 4 d 27 4 d 26 5 d 27 4 d 26 5 d 27 5 d 26 5 d 27 5 d 26 6 d 26 5 d 27 6 d 26 5 d 27 6 d 26 5 d 27 6 d 26 5 d s 454 1942 m 132 X 26 -1 d 27 X 26 -1 d 27 -2 d 26 -2 d 27 -3 d 26 -3 d 27 -4 d 26 -5 d 27 -5 d 26 -7 d 26 -8 d 27 -8 d 26 -9 d 27 -11 d 26 -11 d 27 -12 d 26 -12 d 27 -13 d 26 -14 d 27 -14 d 26 -15 d 26 -15 d 27 -15 d 26 -15 d 27 -15 d 26 -14 d 27 -15 d 26 -14 d 27 -14 d 26 -14 d 27 -13 d 26 -12 d 27 -12 d 26 -11 d 26 -11 d 27 -10 d 26 -9 d 27 -9 d 26 -9 d 27 -7 d 26 -7 d 27 -7 d 26 -6 d 27 -5 d 26 -5 d 27 -4 d 26 -4 d 26 -4 d 27 -3 d 26 -2 d 27 -3 d 26 -1 d 27 -2 d 26 -1 d s 2268 2268 0 0 C 1587 1814 454 227 C 2268 2268 0 0 C gsave 533 336 t 0 r 0 0 m /Times-Roman findfont 120 sf 0 0 m (r) show currentpoint pop 0 t /Times-Roman findfont 84 sf 0 -40 m (s) show currentpoint pop 0 t /Times-Roman findfont 120 sf 0 0 m (=0) show gr 1587 1814 454 227 C 2268 2268 0 0 C 1587 1814 454 227 C 2268 2268 0 0 C gsave 533 644 t 0 r 0 0 m /Times-Roman findfont 120 sf 0 0 m (r) show currentpoint pop 0 t /Times-Roman findfont 84 sf 0 -40 m (s) show currentpoint pop 0 t /Times-Roman findfont 120 sf 0 0 m (=2) show gr 1587 1814 454 227 C 2268 2268 0 0 C 1587 1814 454 227 C 2268 2268 0 0 C gsave 533 1025 t 0 r 0 0 m /Times-Roman findfont 120 sf 0 0 m (r) show currentpoint pop 0 t /Times-Roman findfont 84 sf 0 -40 m (s) show currentpoint pop 0 t /Times-Roman findfont 120 sf 0 0 m (=10) show gr 1587 1814 454 227 C 2268 2268 0 0 C 1587 1814 454 227 C 2268 2268 0 0 C gsave 533 1442 t 0 r 0 0 m /Times-Roman findfont 120 sf 0 0 m (r) show currentpoint pop 0 t /Times-Roman findfont 84 sf 0 -40 m (s) show currentpoint pop 0 t /Times-Roman findfont 120 sf 0 0 m (=50) show gr 1587 1814 454 227 C 2268 2268 0 0 C 1587 1814 454 227 C 2268 2268 0 0 C gsave 533 1823 t 0 r 0 0 m /Times-Roman findfont 120 sf 0 0 m (r) show currentpoint pop 0 t /Times-Roman findfont 84 sf 0 -40 m (s) show currentpoint pop 0 t /Times-Roman findfont 120 sf 0 0 m (=) show currentpoint pop 0 t /Special findfont 120 sf 0 0 m (\245) show gr 1587 1814 454 227 C gr gr showpage end %%EndDocument endTexFig 2119 3864 a Fr(FIG.)c(1.)39 b(The)26 b Fq(\020)g Fr(=)21 b(0)26 b(enhancemen)n(t)e(factor)j(of)f(Eq.)g(\(4\),)g(sho)n(wing)2042 3955 y(GGA)37 b(non-lo)r(calit)n(y)h(or)g Fq(s)p Fr(-dep)r(endence)e (for)i(the)f(PBE)h(functional)2042 4047 y(of)33 b(Ref.)g([9].)56 b Fq(s)32 b Fr(=)h Fg(jr)p Fq(n)p Fg(j)p Fq(=)p Fr(2)p Fq(k)2890 4055 y Ff(F)2942 4047 y Fq(n)g Fr(is)g(the)f(reduced)g (densit)n(y)g(gradien)n(t)2042 4138 y(or)g(inhomogeneit)n(y)g (parameter.)54 b(The)32 b Fq(s)h Fg(!)f(1)g Fr(asymptote)f(of)i(all) 2042 4229 y(curv)n(es)24 b(is)h(1)16 b(+)f Fq(\024)21 b Fr(=)g(1)p Fq(:)p Fr(804.)36 b(The)25 b(LSD)f(curv)n(es)g(w)n(ould)h (b)r(e)g(horizon)n(tal)2042 4321 y(straigh)n(t)h(lines)g(coinciding)h (with)f(the)f(GGA)h(curv)n(es)f(at)h Fq(s)21 b Fr(=)g(0.)2125 4520 y Ft(The)g(exc)n(hange-correlation)d(energy)i([25])h Fn(E)3525 4532 y Fp(X)o(C)3631 4520 y Ft(=)i Fn(E)3780 4532 y Fp(X)3831 4520 y Ft(+)6 b Fn(E)3963 4532 y Fp(C)4028 4520 y Ft(is)2042 4619 y(the)20 b(sum)g(of)h(t)n(w)n(o)e(negativ)n(e)g (con)n(tributions.)33 b(The)20 b(\014rst)g(is)g(the)h(ex-)2042 4719 y(c)n(hange)26 b(energy)h Fn(E)2643 4731 y Fp(X)2688 4719 y Ft(,)h(ev)-5 b(aluated)27 b(from)h(the)g(exp)r(ectation)f(v)-5 b(alue)2042 4819 y(of)30 b(the)h(electron-electron)e(in)n(teraction)g (using)i(a)f(Slater)g(deter-)2042 4918 y(minan)n(t)e(of)f(Kohn-Sham)g (orbitals.)36 b(The)28 b(second)f(is)h(the)g(corre-)2042 5018 y(lation)33 b(energy)g Fn(E)2616 5030 y Fp(C)2660 5018 y Ft(,)j(whic)n(h)e(arises)e(from)i(correlations)e(within)2042 5118 y(the)e(in)n(teracting)e(w)n(a)n(v)n(efunction)h(and)g(th)n(us)h (is)f(of)h(higher)f(order)2042 5217 y(in)j(the)h(electron-electron)d (in)n(teraction.)49 b(Clearly)31 b Fn(F)3732 5229 y Fp(X)o(C)3846 5217 y Fh(\025)f Ft(0)i(in)2042 5317 y(Figs.)e(1)g(and)g(2,)h(as)f(exp) r(ected.)46 b(W)-7 b(e)31 b(seek)f(an)g(in)n(tuitiv)n(e)h(under-)1946 5645 y(2)p eop %%Page: 3 3 3 2 bop -150 -83 a Ft(standing)31 b(of)g(these)h(\014gures.)47 b(The)32 b(corresp)r(onding)d(\014gures)i(for)-150 17 y(other)c(p)r(opular)g(GGA's)h(are)f(presen)n(ted)g(in)g(Ref.)i([20].) -67 116 y(First)45 b(w)n(e)g(consider)f(the)i(dep)r(endence)f(of)h(the) f(individual)-150 216 y(comp)r(onen)n(ts)18 b(of)h(the)h(ground-state)d (energy)h(up)r(on)h(densit)n(y)f(scal-)-150 315 y(ing.)35 b(T)-7 b(emp)r(orarily)20 b(suppressing)g(spin)i(indices,)h(w)n(e)e (replace)g(the)-150 415 y(densit)n(y)k Fn(n)g Ft(in)g(Eq.)g(\(1\))g(b)n (y)g(the)g(uniformly-scaled)f(densit)n(y)h Fn(n)1791 427 y Fl(\015)1834 415 y Ft(:)369 597 y Fn(n)p Ft(\()p Fi(r)p Ft(\))e Fh(!)g Fn(n)701 609 y Fl(\015)744 597 y Ft(\()p Fi(r)p Ft(\))h(=)e Fn(\015)1006 563 y Fj(3)1043 597 y Fn(n)p Ft(\()p Fn(\015)5 b Fi(r)p Ft(\))p Fn(;)519 b Ft(\(9\))-150 779 y(so)51 b(that)h Fn(\020)6 b Ft(\()p Fi(r)p Ft(\))64 b Fh(!)g Fn(\020)6 b Ft(\()p Fn(\015)f Fi(r)p Ft(\))p Fn(;)14 b(s)p Ft(\()p Fi(r)p Ft(\))64 b Fh(!)g Fn(s)p Ft(\()p Fn(\015)5 b Fi(r)p Ft(\))p Fn(;)52 b Ft(and)f Fn(r)1606 791 y Fl(s)1642 779 y Ft(\()p Fi(r)p Ft(\))64 b Fh(!)-150 879 y Fn(\015)-102 849 y Fm(\000)p Fj(1)-13 879 y Fn(r)24 891 y Fl(s)60 879 y Ft(\()p Fn(\015)5 b Fi(r)p Ft(\).)55 b(Increasing)32 b Fn(\015)38 b Ft(mak)n(es)32 b(the)i(densit)n(y)f(distribution)-150 978 y(more)21 b(compact)g(and)g(increases)f(the)h(v)-5 b(alue)22 b(of)f(the)h(a)n(v)n (erage)d(den-)-150 1078 y(sit)n(y)-7 b(,)33 b(while)f(conserving)e(the) j(n)n(um)n(b)r(er)f(of)g(electrons.)49 b(The)32 b(ex-)-150 1178 y(p)r(ectation)j(v)-5 b(alue)35 b(of)f(the)i(sum)f(of)f(the)i (kinetic)f(and)f(electron-)-150 1277 y(electron)g(repulsion)g(op)r (erators,)g(as)g(a)g(functional)h(of)f Fn(n)1666 1289 y Fl(\015)1708 1277 y Ft(,)j(can)-150 1377 y(b)r(e)28 b(written)g(as)-101 1559 y Fn(T)12 b Ft([)p Fn(n)33 1571 y Fl(\015)74 1559 y Ft(])23 b(+)g Fn(V)256 1571 y Fl(ee)323 1559 y Ft([)p Fn(n)396 1571 y Fl(\015)439 1559 y Ft(])g(=)g Fn(T)622 1571 y Fp(S)657 1559 y Ft([)p Fn(n)730 1571 y Fl(\015)772 1559 y Ft(])c(+)f Fn(U)9 b Ft([)p Fn(n)1036 1571 y Fl(\015)1078 1559 y Ft(])18 b(+)g Fn(E)1263 1571 y Fp(X)1308 1559 y Ft([)p Fn(n)1381 1571 y Fl(\015)1424 1559 y Ft(])g(+)g Fn(E)1609 1571 y Fp(C)1654 1559 y Ft([)p Fn(n)1727 1571 y Fl(\015)1769 1559 y Ft(])120 1703 y(=)23 b Fn(\015)256 1668 y Fj(2)293 1703 y Fn(T)342 1715 y Fp(S)377 1703 y Ft([)p Fn(n)p Ft(])18 b(+)g Fn(\015)g Ft(\()q Fn(U)9 b Ft([)p Fn(n)p Ft(])18 b(+)g Fn(E)992 1715 y Fp(X)1037 1703 y Ft([)p Fn(n)p Ft(]\))h(+)f Fn(\015)1315 1668 y Fj(2)1352 1703 y Fn(E)1418 1660 y Fj(1)p Fl(=\015)1413 1716 y Fp(C)1527 1703 y Ft([)p Fn(n)p Ft(])p Fn(:)99 b Ft(\(10\))-150 1885 y(The)31 b(latter)g(iden)n(tit)n(y)g(follo)n(ws)f (from)h(kno)n(wn)g(scaling)f(relations)-150 1984 y([26,27])35 b(for)i(eac)n(h)f(individual)h(term)g(\(e.g.,)i Fn(U)9 b Ft([)p Fn(n)1420 1996 y Fl(\015)1463 1984 y Ft(])38 b(=)h Fn(\015)5 b(U)k Ft([)p Fn(n)p Ft(]\).)-150 2103 y Fn(E)-84 2060 y Fj(1)p Fl(=\015)-89 2116 y Fp(C)26 2103 y Ft([)p Fn(n)p Ft(])33 b(is)g(the)h(correlation)d(energy)h(of)h (a)g(system)g(with)h(den-)-150 2203 y(sit)n(y)39 b Fn(n)f Ft(and)h(with)h(electron-electron)d(in)n(teraction)g(scaled)i(b)n(y) -150 2314 y Fn(\015)-102 2284 y Fm(\000)p Fj(1)-13 2314 y Ft(.)f(As)29 b Fn(\015)f Fh(!)c(1)p Ft(,)29 b(the)f(leading)g(term)g (in)h Fn(E)1278 2271 y Fj(1)p Fl(=\015)1273 2327 y Fp(C)1416 2314 y Ft(go)r(es)e(as)g(1)p Fn(=\015)1833 2284 y Fj(2)1869 2314 y Ft(.)-150 2414 y(The)j(non-in)n(teracting)e(kinetic)i(energy)e Fn(T)1192 2426 y Fp(S)1256 2414 y Ft(and)i(the)g(exc)n(hange)-150 2513 y(energy)22 b Fn(E)172 2525 y Fp(X)240 2513 y Ft(alw)n(a)n(ys)f (scale)h(lik)n(e)h Fn(\015)891 2483 y Fj(2)950 2513 y Ft(and)g Fn(\015)1155 2483 y Fj(1)1192 2513 y Fn(;)g Ft(resp)r(ectiv)n(ely)-7 b(,)23 b(while)-150 2613 y Fn(E)-89 2625 y Fp(C)-16 2613 y Ft(scales)k(in)i(the)f(high-densit)n(y)g(limit)h (lik)n(e)f Fn(\015)1329 2583 y Fj(0)1366 2613 y Ft(.)39 b(F)-7 b(or)28 b(an)n(y)g(den-)-150 2712 y(sit)n(y)22 b Fn(n)p Ft(,)h(the)f(high-densit)n(y)f(\()p Fn(\015)28 b Fh(!)23 b(1)p Ft(\))f(limit)h(is)f(one)f(in)h(whic)n(h)g Fn(E)1847 2724 y Fp(X)-150 2812 y Ft(dominates)30 b Fn(E)311 2824 y Fp(C)356 2812 y Ft(,)h(and)g Fn(T)624 2824 y Fp(S)689 2812 y Ft(dominates)g Fn(E)1151 2824 y Fp(X)1196 2812 y Ft(.)46 b(The)31 b(form)g(of)f(Eqs.)-150 2912 y(\(4\))23 b(and)h(\(8\))f(for)g(the)h(exc)n(hange)d(energy)i(at)g Fn(\020)29 b Ft(=)23 b(0)g(is)g(consisten)n(t)-150 3011 y(with)28 b(the)g(exc)n(hange)e(scaling)h(of)g(Eq.)g(\(10\).)-67 3111 y(The)37 b(exc)n(hange)e(energy)h(for)g(the)h(spin-p)r(olarized)f (case)g(can)-150 3211 y(then)e(b)r(e)g(constructed)f(from)g(that)h(for) f(the)h(unp)r(olarized)f(case)-150 3310 y(via)27 b(the)h(exact)f (spin-scaling)f(relation)h([28]:)71 3531 y Fn(E)132 3543 y Fp(X)177 3531 y Ft([)p Fn(n)250 3543 y Fm(")288 3531 y Fn(;)14 b(n)375 3543 y Fm(#)413 3531 y Ft(])23 b(=)556 3475 y(1)p 556 3512 42 4 v 556 3588 a(2)608 3531 y Fn(E)669 3543 y Fp(X)714 3531 y Ft([)p Fn(n)787 3543 y Fm(")825 3531 y Fn(;)14 b(n)912 3543 y Fm(")950 3531 y Ft(])k(+)1084 3475 y(1)p 1084 3512 V 1084 3588 a(2)1136 3531 y Fn(E)1197 3543 y Fp(X)1242 3531 y Ft([)p Fn(n)1315 3543 y Fm(#)1353 3531 y Fn(;)c(n)1440 3543 y Fm(#)1478 3531 y Ft(])p Fn(:)221 b Ft(\(11\))-150 3741 y(Neglecting)27 b Fh(r)p Fn(\020)6 b Ft(,)29 b(Eqs.)d(\(4\))i(and)g(\(11\))f(imply)-57 3962 y Fn(F)-4 3974 y Fp(X)41 3962 y Ft(\()p Fn(\020)6 b(;)14 b(s)p Ft(\))24 b(=)344 3906 y(1)p 344 3943 V 344 4019 a(2)396 3962 y(\(1)18 b(+)g Fn(\020)6 b Ft(\))645 3928 y Fj(4)p Fl(=)p Fj(3)750 3962 y Fn(F)803 3974 y Fp(X)848 3962 y Ft(\()p Fn(\020)30 b Ft(=)23 b(0)p Fn(;)14 b(s=)p Ft(\(1)j(+)h Fn(\020)6 b Ft(\))1442 3928 y Fj(1)p Fl(=)p Fj(3)1547 3962 y Ft(\))247 4162 y(+)344 4106 y(1)p 344 4143 V 344 4219 a(2)396 4162 y(\(1)18 b Fh(\000)g Fn(\020)6 b Ft(\))645 4128 y Fj(4)p Fl(=)p Fj(3)750 4162 y Fn(F)803 4174 y Fp(X)848 4162 y Ft(\()p Fn(\020)30 b Ft(=)23 b(0)p Fn(;)14 b(s=)p Ft(\(1)j Fh(\000)h Fn(\020)6 b Ft(\))1442 4128 y Fj(1)p Fl(=)p Fj(3)1547 4162 y Ft(\))p Fn(:)143 b Ft(\(12\))-150 4368 y(The)34 b(gradien)n(t-corrected)d(functional)j (for)f Fn(E)1309 4380 y Fp(C)1387 4368 y Ft(t)n(ypically)h(do)r(es)-150 4467 y(not)e(include)g Fh(r)p Fn(\020)39 b Ft(terms.)50 b(The)32 b(analog)e(of)i(Eq.)g(\(11\))f(for)h Fn(T)1770 4479 y Fp(S)1837 4467 y Ft(is)-150 4567 y([28])104 4788 y Fn(T)153 4800 y Fp(S)188 4788 y Ft([)p Fn(n)261 4800 y Fm(")299 4788 y Fn(;)14 b(n)386 4800 y Fm(#)424 4788 y Ft(])23 b(=)568 4732 y(1)p 568 4769 V 568 4845 a(2)619 4788 y Fn(T)668 4800 y Fp(S)703 4788 y Ft([)p Fn(n)776 4800 y Fm(")814 4788 y Fn(;)14 b(n)901 4800 y Fm(")939 4788 y Ft(])k(+)1073 4732 y(1)p 1073 4769 V 1073 4845 a(2)1125 4788 y Fn(T)1174 4800 y Fp(S)1209 4788 y Ft([)p Fn(n)1282 4800 y Fm(#)1320 4788 y Fn(;)c(n)1407 4800 y Fm(#)1445 4788 y Ft(])p Fn(:)254 b Ft(\(13\))-150 4998 y(\(In)24 b(Ref.)h([28],)f Fn(T)379 5010 y Fp(S)413 4998 y Ft([)p Fn(n)486 5010 y Fl(\033)531 4998 y Fn(;)14 b(n)618 5010 y Fl(\033)662 4998 y Ft(])24 b(w)n(as)f(denoted)h Fn(T)1224 5010 y Fp(S)1259 4998 y Ft([2)p Fn(n)1374 5010 y Fl(\033)1418 4998 y Ft(],)h(with)f(a)g(sim-)-150 5098 y(ilar)j(notation)g(for)g Fn(E)518 5110 y Fp(X)563 5098 y Ft(.\))-67 5197 y(No)n(w)18 b(w)n(e)h(consider)e(spin)i(densities)g Fn(n)1087 5209 y Fm(")1125 5197 y Ft(\()p Fi(r)p Ft(\))g(and)g Fn(n)1450 5209 y Fm(#)1488 5197 y Ft(\()p Fi(r)p Ft(\))g(that)g(are) -150 5297 y(not)30 b(to)r(o)f(far)h(from)f(the)h(slo)n(wly-v)-5 b(arying)28 b(\()p Fn(s)f(<<)f Ft(1,)k(etc.\))44 b(limit)-150 5396 y([1],)34 b(and)f(n)n(um)n(b)r(er-conserving)d(v)-5 b(ariations)32 b(of)g(these)h(densities)2042 -83 y(whic)n(h)d(c)n (hange)f(the)i(lo)r(cal)f(densit)n(y)g(parameters)f Fn(r)3663 -71 y Fl(s)3699 -83 y Fn(;)14 b(\020)6 b(;)14 b(s)p Ft(.)46 b(Ho)n(w)2042 17 y(do)24 b Fn(E)2215 29 y Fp(X)2285 17 y Ft(and)h Fn(E)2505 29 y Fp(C)2574 17 y Ft(c)n(hange)e(under)i(suc)n (h)f(v)-5 b(ariations?)35 b(Let)25 b(us)f(\014rst)2042 116 y(discuss)18 b(the)i(non-in)n(teracting)d(kinetic)j(energy)e Fn(T)3584 128 y Fp(S)3638 116 y Ft(of)h(the)g(Kohn-)2042 216 y(Sham)30 b(determinan)n(t.)45 b(Its)31 b(second-order)d(gradien)n (t)h(expansion)2042 315 y(appro)n(ximation)c([28])i(\(GEA\),)2108 524 y Fn(T)2157 536 y Fj(0)2194 524 y Ft([)p Fn(n)2267 536 y Fm(")2305 524 y Fn(;)14 b(n)2392 536 y Fm(#)2429 524 y Ft(])19 b(+)f Fn(T)2603 536 y Fj(2)2640 524 y Ft([)p Fn(n)2713 536 y Fm(")2751 524 y Fn(;)c(n)2838 536 y Fm(#)2876 524 y Ft(])23 b(=)3010 411 y Fk(Z)3106 524 y Fn(d)3149 489 y Fj(3)3187 524 y Fn(r)30 b(n)3318 407 y Fk(\024)3386 467 y Ft(3)p Fn(\013)3481 437 y Fj(2)p 3372 504 161 4 v 3372 581 a Ft(10)p Fn(r)3495 557 y Fj(2)3493 601 y Fl(s)3542 407 y Fk(\025)3599 524 y Fn(G)p Ft(\()p Fn(\020)6 b(;)14 b(s)p Ft(\))p Fn(;)68 b Ft(\(14\))2134 817 y Fn(G)p Ft(\()p Fn(\020)6 b(;)14 b(s)p Ft(\))24 b(=)2492 725 y Fk(h)2532 817 y Ft(\(1)18 b(+)g Fn(\020)6 b Ft(\))2781 783 y Fj(5)p Fl(=)p Fj(3)2904 817 y Ft(+)18 b(\(1)h Fh(\000)f Fn(\020)6 b Ft(\))3237 783 y Fj(5)p Fl(=)p Fj(3)3342 725 y Fk(i)3395 817 y Fn(=)p Ft(2)17 b(+)h(5)p Fn(s)3660 783 y Fj(2)3697 817 y Fn(=)p Ft(27)p Fn(;)91 b Ft(\(15\))2042 997 y(scales)30 b(as)h(in)h(Eqs.)e(\(10\))h(and)h(\(13\),)g(and)f(is)h (arguably)d(its)j(o)n(wn)2042 1096 y(GGA)26 b([29].)35 b(Clearly)25 b(the)h(kinetic)g(energy)e(p)r(er)i(particle)f(can)g(b)r (e)2042 1196 y(increased)33 b(b)n(y)h(decreasing)f Fn(r)2977 1208 y Fl(s)3013 1196 y Ft(,)j(increasing)d Fh(j)p Fn(\020)6 b Fh(j)p Ft(,)37 b(or)d(increasing)2042 1295 y Fn(s)p Ft(,)h(as)d(demanded)i(b)n(y)f(the)h(P)n(auli)e(exclusion)h(and)g (uncertain)n(t)n(y)2042 1395 y(principles)27 b(and)h(b)n(y)f(scaling.) 2042 1519 y 16315937 9323399 657817 16445440 37298257 37298257 startTexFig 2042 1519 a %%BeginDocument: fig2.eps 80 dict begin /s {stroke} def /l {lineto} def /m {moveto} def /t {translate} def /sw {stringwidth} def /r {rotate} def /rl {roll} def /R {repeat} def /d {rlineto} def /rm {rmoveto} def /gr {grestore} def /f {eofill} def /c {setrgbcolor} def /lw {setlinewidth} def /sd {setdash} def /cl {closepath} def /sf {scalefont setfont} def /black {0 setgray} def /box {m dup 0 exch d exch 0 d 0 exch neg d cl} def /NC{systemdict begin initclip end}def/C{NC box clip newpath}def /bl {box s} def /bf {box f} def /Y { 0 exch d} def /X { 0 d} def /mp {newpath /y exch def /x exch def} def /side {[w .77 mul w .23 mul] .385 w mul sd w 0 l currentpoint t -144 r} def /mr {mp x y w2 0 360 arc} def /m24 {mr s} def /m20 {mr f} def /mb {mp x y w2 add m w2 neg 0 d 0 w neg d w 0 d 0 w d cl} def /mt {mp x y w2 add m w2 neg w neg d w 0 d cl} def /m21 {mb f} def /m25 {mb s} def /m22 {mt f} def /m26 {mt s} def /m23 {mp x y w2 sub m w2 w d w neg 0 d cl f} def /m27 {mp x y w2 add m w3 neg w2 neg d w3 w2 neg d w3 w2 d cl s} def /m28 {mp x w2 sub y w2 sub w3 add m w3 0 d 0 w3 neg d w3 0 d 0 w3 d w3 0 d 0 w3 d w3 neg 0 d 0 w3 d w3 neg 0 d 0 w3 neg d w3 neg 0 d cl s } def /m29 {mp gsave x w2 sub y w2 add w3 sub m currentpoint t 4 {side} repeat cl fill gr} def /m30 {mp gsave x w2 sub y w2 add w3 sub m currentpoint t 5 {side} repeat s gr} def /m31 {mp x y w2 sub m 0 w d x w2 sub y m w 0 d x w2 sub y w2 add m w w neg d x w2 sub y w2 sub m w w d s} def /m2 {mp x y w2 sub m 0 w d x w2 sub y m w 0 d s} def /m5 {mp x w2 sub y w2 sub m w w d x w2 sub y w2 add m w w neg d s} def /DP {/PT exch def gsave 47.2 47.2 scale PT 1 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < AA AA 55 55 AA AA 55 55 AA AA 55 55 AA AA 55 55 AA AA 55 55 AA AA 55 55 AA AA 55 55 AA AA 55 55 > } image } if PT 2 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < BB BB EE EE BB BB EE EE BB BB EE EE BB BB EE EE BB BB EE EE BB BB EE EE BB BB EE EE BB BB EE EE > } image } if PT 3 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < FF FF BB BB FF FF EE EE FF FF BB BB FF FF EE EE FF FF BB BB FF FF EE EE FF FF BB BB FF FF EE EE > } image } if PT 4 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < DF DF BF BF 7F 7F FE FE FD FD FB FB F7 F7 EF EF DF DF BF BF 7F 7F FE FE FD FD FB FB F7 F7 EF EF > } image } if PT 5 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < 7F 7F BF B F DF DF EF EF F7 F7 FB FB FD FD FE FE 7F 7F BF BF DF DF EF EF F7 F7 FB FB FD FD FE FE > } image } if PT 6 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB > } image } if PT 7 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < FF FF FF FF FF FF 00 00 FF FF FF FF FF FF 00 00 FF FF FF FF FF FF 00 00 FF FF FF FF FF FF 00 00 > } image } if PT 8 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < EE EE 47 47 83 83 C5 C5 EE EE 5C 5C 38 38 74 74 EE EE 47 47 83 83 C5 C5 EE EE 5C 5C 38 38 74 74 > } image } if PT 9 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < EF EF EF EF D7 D7 38 38 FE FE FE FE 7D 7D 83 83 EF EF EF EF D7 D7 38 38 FE FE FE FE 7D 7D 83 83 > } image } if PT 10 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < EF EF EF EF EF EF 00 00 FE FE FE FE FE FE 00 00 EF EF EF EF EF EF 00 00 FE FE FE FE FE FE 00 00 > } image } if PT 11 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < F7 F7 B6 B6 D5 D5 E3 E3 D5 D5 B6 B6 F7 F7 FF FF 7F 7F 6B 6B 5D 5D 3E 3E 5D 5D 6B 6B 7F 7F FF FF > } image } if PT 12 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < E3 E3 DD DD BE BE BE BE BE BE DD DD E3 E3 FF FF 3E 3E DD DD EB EB EB EB EB EB DD DD 3E 3E FF FF > } image } if PT 13 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < FE FE 7D 7D BB BB D7 D7 EF EF D7 D7 BB BB 7D 7D FE FE 7D 7D BB BB D7 D7 EF EF D7 D7 BB BB 7D 7D > } image } if PT 14 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < 00 00 EE EF EE EF EE EF 0E E0 EE EE EE EE EE EE 00 EE FE EE FE EE FE EE 00 00 FE EF FE EF FE EF > } image } if PT 15 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < DD DD AA AA DD DD FF FF 77 77 AA AA 77 77 FF FF DD DD AA AA DD DD FF FF 77 77 AA AA 77 77 FF FF > } image } if PT 16 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < F1 F1 EE EE 1F 1F FF FF F1 F1 EE EE 1F 1F FF FF F1 F1 EE EE 1F 1F FF FF F1 F1 EE EE 1F 1F FF FF > } image } if PT 17 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < EE EE DD DD BB BB FF FF EE EE DD DD BB BB FF FF EE EE DD DD BB BB FF FF EE EE DD DD BB BB FF FF > } image } if PT 18 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < BB BB DD DD EE EE FF FF BB BB DD DD EE EE FF FF BB BB DD DD EE EE FF FF BB BB DD DD EE EE FF FF > } image } if PT 19 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < 1F FC 67 F3 7B EF BD DE BD DE DE BD E6 B3 F8 0F E6 B3 DE BD BD DE BD DE 7B EF 67 F3 1F FC 7F FF > } image } if PT 20 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < DD DD EE EE EE EE EE EE DD DD BB BB BB BB BB BB DD DD EE EE EE EE EE EE DD DD BB BB BB BB BB BB > } image } if PT 21 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < 0E 0E EF EF EF EF EF EF E0 E0 FE FE FE FE FE FE 0E 0E EF EF EF EF EF EF E0 E0 FE FE FE FE FE FE > } image } if PT 22 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < 70 70 F7 F7 F7 F7 F7 F7 07 07 7F 7F 7F 7F 7F 7F 70 70 F7 F7 F7 F7 F7 F7 07 07 7F 7F 7F 7F 7F 7F > } image } if PT 23 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < AA AA 55 55 A9 A9 D1 D1 E1 E1 D1 D1 A9 A9 55 55 AA AA 55 55 A9 A9 D1 D1 E1 E1 D1 D1 A9 A9 55 55 > } image } if PT 24 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < FF FE FF FC EA A8 D5 54 EA A8 D5 54 E8 28 D4 54 E8 E8 D4 D4 E8 EA 54 D5 A8 EA 54 D5 00 C0 00 80 > } image } if PT 25 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < FF FE FF FC FF F8 FF F0 F0 00 F0 00 F0 20 F0 60 F0 E0 F1 E0 F3 E0 F0 00 E0 00 C0 00 80 00 00 00 > } image } if gr } def /FA { /PT exch def gsave clip 0 0 translate 1 1 54 { 1 sub 47.2 mul /Xcurr exch def 1 1 74 { 1 sub 47.2 mul /Ycurr exch def gsave Xcurr Ycurr translate PT DP gr } for } for gr } def /reencdict 24 dict def /ReEncode {reencdict begin /nco&na exch def /nfnam exch def /basefontname exch def /basefontdict basefontname findfont def /newfont basefontdict maxlength dict def basefontdict {exch dup /FID ne {dup /Encoding eq {exch dup length array copy newfont 3 1 roll put} {exch newfont 3 1 roll put} ifelse} {pop pop} ifelse } forall newfont /FontName nfnam put nco&na aload pop nco&na length 2 idiv {newfont /Encoding get 3 1 roll put} repeat nfnam newfont definefont pop end } def /accvec [ 176 /agrave 181 /Agrave 190 /acircumflex 192 /Acircumflex 201 /adieresis 204 /Adieresis 209 /ccedilla 210 /Ccedilla 211 /eacute 212 /Eacute 213 /egrave 214 /Egrave 215 /ecircumflex 216 /Ecircumflex 217 /edieresis 218 /Edieresis 219 /icircumflex 220 /Icircumflex 221 /idieresis 222 /Idieresis 223 /ntilde 224 /Ntilde 226 /ocircumflex 228 /Ocircumflex 229 /odieresis 230 /Odieresis 231 /ucircumflex 236 /Ucircumflex 237 /udieresis 238 /Udieresis 239 /aring 242 /Aring 243 /ydieresis 244 /Ydieresis 246 /aacute 247 /Aacute 252 /ugrave 253 /Ugrave] def /Times-Roman /Times-Roman accvec ReEncode /Times-Italic /Times-Italic accvec ReEncode /Times-Bold /Times-Bold accvec ReEncode /Times-BoldItalic /Times-BoldItalic accvec ReEncode /Helvetica /Helvetica accvec ReEncode /Helvetica-Oblique /Helvetica-Oblique accvec ReEncode /Helvetica-Bold /Helvetica-Bold accvec ReEncode /Helvetica-BoldOblique /Helvetica-BoldOblique accvec ReEncode /Courier /Courier accvec ReEncode /Courier-Oblique /Courier-Oblique accvec ReEncode /Courier-Bold /Courier-Bold accvec ReEncode /Courier-BoldOblique /Courier-BoldOblique accvec ReEncode /oshow {gsave [] 0 sd true charpath stroke gr} def /stwn { /fs exch def /fn exch def /text exch def fn findfont fs sf text sw pop xs add /xs exch def} def /stwb { /fs exch def /fn exch def /nbas exch def /textf exch def textf length /tlen exch def nbas tlen gt {/nbas tlen def} if fn findfont fs sf textf dup length nbas sub nbas getinterval sw pop neg xs add /xs exch def} def /accspe [ 65 /plusminus 66 /bar 67 /existential 68 /universal 69 /exclam 70 /numbersign 71 /greater 72 /question 73 /integral 74 /colon 75 /semicolon 76 /less 77 /bracketleft 78 /bracketright 79 /greaterequal 80 /braceleft 81 /braceright 82 /radical 83 /spade 84 /heart 85 /diamond 86 /club 87 /lessequal 88 /multiply 89 /percent 90 /infinity 48 /circlemultiply 49 /circleplus 50 /emptyset 51 /lozenge 52 /bullet 53 /arrowright 54 /arrowup 55 /arrowleft 56 /arrowdown 57 /arrowboth 48 /degree 44 /comma 43 /plus 45 /angle 42 /angleleft 47 /divide 61 /notequal 40 /equivalence 41 /second 97 /approxequal 98 /congruent 99 /perpendicular 100 /partialdiff 101 /florin 102 /intersection 103 /union 104 /propersuperset 105 /reflexsuperset 106 /notsubset 107 /propersubset 108 /reflexsubset 109 /element 110 /notelement 111 /gradient 112 /logicaland 113 /logicalor 114 /arrowdblboth 115 /arrowdblleft 116 /arrowdblup 117 /arrowdblright 118 /arrowdbldown 119 /ampersand 120 /omega1 121 /similar 122 /aleph ] def /Symbol /Special accspe ReEncode gsave .25 .25 scale gsave 0 0 t black [] 0 sd 1 lw 1587 794 454 1247 bl 1587 794 454 1247 C NC 454 1247 m 794 Y s 488 1247 m -34 X s 471 1287 m -17 X s 471 1327 m -17 X s 471 1366 m -17 X s 471 1406 m -17 X s 488 1446 m -34 X s 471 1486 m -17 X s 471 1525 m -17 X s 471 1565 m -17 X s 471 1605 m -17 X s 488 1644 m -34 X s 471 1684 m -17 X s 471 1724 m -17 X s 471 1763 m -17 X s 471 1803 m -17 X s 488 1843 m -34 X s 471 1882 m -17 X s 471 1922 m -17 X s 471 1962 m -17 X s 471 2002 m -17 X s 488 2041 m -34 X s 488 2041 m -34 X s /xs 0 def (0) /Times-Roman 86 stwn gsave 408 1219 t 0 r xs neg 0 t 0 0 m /Times-Roman findfont 86 sf 0 0 m (0) show gr /xs 0 def (0.1) /Times-Roman 86 stwn gsave 408 1418 t 0 r xs neg 0 t 0 0 m /Times-Roman findfont 86 sf 0 0 m (0.1) show gr /xs 0 def (0.2) /Times-Roman 86 stwn gsave 408 1616 t 0 r xs neg 0 t 0 0 m /Times-Roman findfont 86 sf 0 0 m (0.2) show gr /xs 0 def (0.3) /Times-Roman 86 stwn gsave 408 1814 t 0 r xs neg 0 t 0 0 m /Times-Roman findfont 86 sf 0 0 m (0.3) show gr /xs 0 def (0.4) /Times-Roman 86 stwn gsave 408 2013 t 0 r xs neg 0 t 0 0 m /Times-Roman findfont 86 sf 0 0 m (0.4) show gr 454 1247 m 1587 X s 454 1281 m -34 Y s 559 1264 m -17 Y s 665 1264 m -17 Y s 771 1264 m -17 Y s 877 1264 m -17 Y s 983 1281 m -34 Y s 1089 1264 m -17 Y s 1194 1264 m -17 Y s 1300 1264 m -17 Y s 1406 1264 m -17 Y s 1512 1281 m -34 Y s 1618 1264 m -17 Y s 1724 1264 m -17 Y s 1830 1264 m -17 Y s 1935 1264 m -17 Y s 2041 1281 m -34 Y s /xs 0 def (0) /Times-Roman 86 stwn gsave 454 1168 t 0 r xs 2 div neg 0 t 0 0 m /Times-Roman findfont 86 sf 0 0 m (0) show gr /xs 0 def (1) /Times-Roman 86 stwn gsave 983 1168 t 0 r xs 2 div neg 0 t 0 0 m /Times-Roman findfont 86 sf 0 0 m (1) show gr /xs 0 def (2) /Times-Roman 86 stwn gsave 1512 1168 t 0 r xs 2 div neg 0 t 0 0 m /Times-Roman findfont 86 sf 0 0 m (2) show gr /xs 0 def (3) /Times-Roman 86 stwn gsave 2041 1168 t 0 r xs 2 div neg 0 t 0 0 m /Times-Roman findfont 86 sf 0 0 m (3) show gr 1587 794 454 1247 C 2268 2268 0 0 C /xs 0 def (s) /Times-Roman 86 stwn gsave 2041 1102 t 0 r xs neg 0 t 0 0 m /Times-Roman findfont 86 sf 0 0 m (s) show gr 1587 794 454 1247 C 2268 2268 0 0 C 1587 794 454 1247 C 2268 2268 0 0 C gsave 718 1922 t 0 r 0 0 m /Times-Roman findfont 86 sf 0 0 m (F) show currentpoint pop 0 t /Times-Roman findfont 60 sf 0 -29 m (xc) show currentpoint pop 0 t /Times-Roman findfont 86 sf 0 0 m (\(r) show currentpoint pop 0 t /Times-Roman findfont 60 sf 0 -29 m (s) show currentpoint pop 0 t /Times-Roman findfont 86 sf 0 0 m (,) show currentpoint pop 0 t /Symbol findfont 86 sf 0 0 m (z) show currentpoint pop 0 t /Times-Roman findfont 86 sf 0 0 m (=1,s\)-F) show currentpoint pop 0 t /Times-Roman findfont 60 sf 0 -29 m (xc) show currentpoint pop 0 t /Times-Roman findfont 86 sf 0 0 m (\(r) show currentpoint pop 0 t /Times-Roman findfont 60 sf 0 -29 m (s) show currentpoint pop 0 t /Times-Roman findfont 86 sf 0 0 m (,) show currentpoint pop 0 t /Symbol findfont 86 sf 0 0 m (z) show currentpoint pop 0 t /Times-Roman findfont 86 sf 0 0 m (=0,s\)) show gr 1587 794 454 1247 C 3 lw 454 1763 m 26 X 27 -1 d 26 -1 d 26 -1 d 27 -2 d 26 -2 d 27 -3 d 26 -3 d 27 -3 d 26 -3 d 27 -3 d 26 -3 d 27 -4 d 26 -3 d 27 -3 d 26 -3 d 26 -2 d 27 -3 d 26 -2 d 27 -2 d 26 -2 d 27 -1 d 26 -1 d 80 X 26 1 d 26 1 d 27 1 d 26 2 d 27 2 d 26 2 d 27 3 d 26 3 d 27 3 d 26 4 d 27 3 d 26 4 d 27 4 d 26 5 d 26 4 d 27 5 d 26 4 d 27 5 d 26 5 d 27 5 d 26 5 d 27 5 d 26 5 d 27 6 d 26 5 d 27 5 d 26 5 d 26 6 d 27 5 d 26 5 d 27 5 d 26 5 d 27 5 d 26 5 d s 454 1583 m 132 X 26 1 d 27 X 26 1 d 27 2 d 26 1 d 27 3 d 26 2 d 27 3 d 26 3 d 27 3 d 26 4 d 26 3 d 27 4 d 26 5 d 27 4 d 26 4 d 27 5 d 26 5 d 27 5 d 26 4 d 27 5 d 26 6 d 26 5 d 27 5 d 26 5 d 27 6 d 26 5 d 27 6 d 26 5 d 27 6 d 26 6 d 27 6 d 26 5 d 27 6 d 26 6 d 26 6 d 27 6 d 26 6 d 27 6 d 26 6 d 27 6 d 26 6 d 27 6 d 26 6 d 27 6 d 26 6 d 27 6 d 26 5 d 26 6 d 27 6 d 26 6 d 27 5 d 26 6 d 27 5 d 26 6 d s 454 1413 m 158 X 27 1 d 26 1 d 27 1 d 26 2 d 27 2 d 26 2 d 27 3 d 26 4 d 27 5 d 26 5 d 26 6 d 27 7 d 26 7 d 27 8 d 26 9 d 27 9 d 26 9 d 27 10 d 26 10 d 27 11 d 26 10 d 26 11 d 27 11 d 26 10 d 27 11 d 26 11 d 27 10 d 26 11 d 27 10 d 26 10 d 27 10 d 26 10 d 27 10 d 26 9 d 26 10 d 27 9 d 26 9 d 27 9 d 26 9 d 27 8 d 26 9 d 27 8 d 26 8 d 27 8 d 26 7 d 27 8 d 26 7 d 26 8 d 27 7 d 26 7 d 27 7 d 26 6 d 27 7 d 26 6 d s 454 1298 m 79 X 26 1 d 80 X 26 1 d 27 1 d 26 1 d 27 2 d 26 2 d 27 3 d 26 3 d 27 4 d 26 5 d 26 5 d 27 6 d 26 7 d 27 8 d 26 8 d 27 10 d 26 10 d 27 10 d 26 12 d 27 11 d 26 13 d 26 12 d 27 13 d 26 13 d 27 14 d 26 13 d 27 14 d 26 14 d 27 13 d 26 14 d 27 13 d 26 14 d 27 13 d 26 12 d 26 13 d 27 12 d 26 13 d 27 11 d 26 12 d 27 11 d 26 12 d 27 10 d 26 11 d 27 10 d 26 10 d 27 10 d 26 9 d 26 10 d 27 9 d 26 9 d 27 8 d 26 8 d 27 9 d 26 7 d s 454 1308 m 158 X 27 1 d 26 X 27 1 d 26 1 d 27 1 d 26 2 d 27 3 d 26 2 d 27 4 d 26 4 d 26 4 d 27 5 d 26 6 d 27 6 d 26 7 d 27 7 d 26 8 d 27 9 d 26 9 d 27 10 d 26 10 d 26 11 d 27 11 d 26 11 d 27 12 d 26 12 d 27 12 d 26 12 d 27 12 d 26 13 d 27 12 d 26 13 d 27 12 d 26 13 d 26 12 d 27 13 d 26 12 d 27 12 d 26 12 d 27 11 d 26 12 d 27 11 d 26 11 d 27 11 d 26 11 d 27 10 d 26 10 d 26 10 d 27 10 d 26 9 d 27 9 d 26 9 d 27 9 d 26 9 d s 2268 2268 0 0 C 1587 794 454 1247 C 2268 2268 0 0 C gsave 533 1803 t 0 r 0 0 m /Times-Roman findfont 86 sf 0 0 m (r) show currentpoint pop 0 t /Times-Roman findfont 60 sf 0 -29 m (s) show currentpoint pop 0 t /Times-Roman findfont 86 sf 0 0 m (=0) show gr 1587 794 454 1247 C 2268 2268 0 0 C 1587 794 454 1247 C 2268 2268 0 0 C gsave 533 1624 t 0 r 0 0 m /Times-Roman findfont 86 sf 0 0 m (r) show currentpoint pop 0 t /Times-Roman findfont 60 sf 0 -29 m (s) show currentpoint pop 0 t /Times-Roman findfont 86 sf 0 0 m (=2) show gr 1587 794 454 1247 C 2268 2268 0 0 C 1587 794 454 1247 C 2268 2268 0 0 C gsave 533 1456 t 0 r 0 0 m /Times-Roman findfont 86 sf 0 0 m (r) show currentpoint pop 0 t /Times-Roman findfont 60 sf 0 -29 m (s) show currentpoint pop 0 t /Times-Roman findfont 86 sf 0 0 m (=10) show gr 1587 794 454 1247 C 2268 2268 0 0 C 1587 794 454 1247 C 2268 2268 0 0 C gsave 533 1337 t 0 r 0 0 m /Times-Roman findfont 86 sf 0 0 m (r) show currentpoint pop 0 t /Times-Roman findfont 60 sf 0 -29 m (s) show currentpoint pop 0 t /Times-Roman findfont 86 sf 0 0 m (=) show currentpoint pop 0 t /Special findfont 86 sf 0 0 m (\245) show gr 1587 794 454 1247 C 2268 2268 0 0 C 1587 794 454 1247 C 2268 2268 0 0 C 1587 794 454 1247 C 2268 2268 0 0 C 1499 1357 m -93 178 d s 1403 1482 m 3 53 d 45 -28 d s 1587 794 454 1247 C 2268 2268 0 0 C 1587 794 454 1247 C 2268 2268 0 0 C gsave 1512 1337 t 0 r 0 0 m /Times-Roman findfont 86 sf 0 0 m (r) show currentpoint pop 0 t /Times-Roman findfont 60 sf 0 -29 m (s) show currentpoint pop 0 t /Times-Roman findfont 86 sf 0 0 m (=50) show gr 1587 794 454 1247 C gr gr showpage end %%EndDocument endTexFig 2119 2765 a Fr(FIG.)34 b(2.)62 b(Same)44 b(as)h(Fig.)h(\(1\))e(for)h (the)g(spin-p)r(olarization)h(en-)2042 2856 y(ergy)35 b(enhancemen)n(t)e(factor.)62 b(The)35 b(v)l(alue)g(at)g Fq(r)3481 2864 y Ff(s)3550 2856 y Fr(=)h(0)f(and)f Fq(s)j Fr(=)f(0)2042 2947 y(is)i(2)2169 2916 y Fe(1)p Ff(=)p Fe(3)2291 2947 y Fg(\000)24 b Fr(1)41 b(=)g(0)p Fq(:)p Fr(260,)h(from)c(the)e(spin-scaling)j(relation)f(for)g(the)2042 3039 y(exc)n(hange)47 b(energy)93 b([28].)100 b(F)-6 b(or)47 b(0)57 b Fq(<)f Fg(j)p Fq(\020)5 b Fg(j)58 b Fq(<)e Fr(1,)d Fq(F)3730 3047 y Fp(X)o(C)3813 3039 y Fr(\()p Fq(r)3878 3047 y Ff(s)3911 3039 y Fq(;)13 b(\020)5 b(;)13 b(s)p Fr(\))2042 3130 y Fg(\031)21 b Fq(F)2172 3138 y Fp(X)o(C)2255 3130 y Fr(\()p Fq(r)2320 3138 y Ff(s)2353 3130 y Fq(;)13 b Fr(0)p Fq(;)h(s)p Fr(\))25 b(+)p Fq(\020)2650 3098 y Fe(2)2697 3130 y Fr([)p Fq(F)2767 3138 y Fp(X)o(C)2851 3130 y Fr(\()p Fq(r)2916 3138 y Ff(s)2948 3130 y Fq(;)14 b Fr(1)p Fq(;)f(s)p Fr(\))k Fg(\000)g Fq(F)3264 3138 y Fp(X)o(C)3347 3130 y Fr(\()p Fq(r)3412 3138 y Ff(s)3445 3130 y Fq(;)c Fr(0)p Fq(;)g(s)p Fr(\)].)35 b(The)26 b Fq(s)21 b Fg(!)g(1)2042 3221 y Fr(asymptote)i(of)i(all)g(curv)n(es)e(is)i([2)2973 3190 y Fe(1)p Ff(=)p Fe(3)3084 3221 y Fg(\000)13 b Fr(1]\(1)i(+)e Fq(\024)p Fr(\))22 b(=)f(0)p Fq(:)p Fr(469.)36 b(The)24 b(LSD)2042 3313 y(curv)n(es)j(w)n(ould)h(b)r(e)f(horizon)n(tal)h (straigh)n(t)g(lines)g(coinciding)h(with)e(the)2042 3404 y(GGA)e(curv)n(es)h(at)g Fq(s)21 b Fr(=)g(0.)2125 3603 y Fh(j)p Fn(E)2209 3615 y Fp(X)2254 3603 y Fh(j)38 b Ft(is)g(in)n(timately)g(related)f(to)h Fn(T)3264 3615 y Fp(S)3299 3603 y Ft(,)j(since)d(b)r(oth)g(are)f(con-)2042 3703 y(structed)48 b(from)h(the)g(one-electron)e(densit)n(y)h(matrix)g (of)h(the)2042 3802 y(Kohn-Sham)27 b(determinan)n(t)h([30,31].)36 b(Indeed,)28 b(these)g(t)n(w)n(o)f(den-)2042 3902 y(sit)n(y)i (functionals)h(ha)n(v)n(e)f(b)r(een)h(called)f(\\conjoin)n(t")g([32].) 42 b(Let)30 b(us)2042 4002 y(consider)f(a)h(densit)n(y)h(v)-5 b(ariation)29 b(in)i(whic)n(h)g Fn(dr)3502 4014 y Fl(s)3566 4002 y Fh(\024)c Ft(0)p Fn(;)44 b(d)p Fh(j)p Fn(\020)6 b Fh(j)29 b(\025)f Ft(0,)2042 4101 y(and)g Fn(ds)d Fh(\025)g Ft(0)j(ev)n(erywhere,)f(whence)i Fn(dT)3311 4113 y Fp(S)3371 4101 y Fh(\025)24 b Ft(0.)40 b(With)30 b(more)e(ki-)2042 4201 y(netic)g(energy)-7 b(,)28 b(the)h(o)r(ccupied)f(orbitals)f(can)h (dig)h(a)f(more)f(lo)r(cal-)2042 4301 y(ized)d(and)f(deep)r(er)h(exc)n (hange)e(hole,)i(as)g(the)g(uncertain)n(t)n(y)f(princi-)2042 4400 y(ple)29 b(suggests.)39 b(The)29 b(\014rst)f(e\013ect)h(of)g(suc)n (h)g(an)f(increase)g(in)h Fn(T)3965 4412 y Fp(S)4028 4400 y Ft(is)2042 4500 y(an)23 b(increase)g(in)h Fh(j)p Fn(E)2641 4512 y Fp(X)2686 4500 y Fh(j)p Ft(,)h(i.e.,)f(exc)n(hange)f (turns)g(on)h(more)f(strongly)2042 4599 y(when)f Fn(r)2290 4611 y Fl(s)2348 4599 y Ft(decreases,)g Fn(s)g Ft(increases,)g(or)f Fh(j)p Fn(\020)6 b Fh(j)23 b Ft(increases,)f(whic)n(h)g(can)2042 4699 y(also)k(b)r(e)i(seen)g(from)f(Eq.)g(\(4\))h(and)f(Figs.)g(1)h (and)f(2.)2125 4799 y(The)46 b(second)f(e\013ect)h(of)g(an)n(y)f(suc)n (h)h(increase)f(in)h Fn(T)3828 4811 y Fp(S)3909 4799 y Ft(is)f(to)2042 4898 y(strengthen)h(the)h(unp)r(erturb)r(ed)g(or)e (non-in)n(teracting)g(p)r(oten-)2042 4998 y(tial)i(\(i.e.,)52 b(the)47 b(Kohn-Sham)f(p)r(oten)n(tial)g(whic)n(h)h(holds)g(non-)2042 5098 y(in)n(teracting)39 b(electrons)g(at)h(the)g(spin)h(densities)f Fn(n)3689 5110 y Fm(")3767 5098 y Ft(and)g Fn(n)3991 5110 y Fm(#)4029 5098 y Ft(\).)2042 5197 y(The)30 b(soft-core,)e (long-range)f(electron-electron)h(repulsion)h(b)r(e-)2042 5297 y(comes)j(a)h(relativ)n(ely)e(w)n(eak)n(er)g(p)r(erturbation)h ([27,33],)h(th)n(us)g(re-)2042 5396 y(ducing)k(the)h(ratio)f Fn(E)2742 5408 y Fp(C)2786 5396 y Fn(=E)2889 5408 y Fp(X)2934 5396 y Ft(,)j(whic)n(h)e(tends)f(to)h(zero)f(when)g Fn(T)4049 5408 y Fp(S)1946 5645 y Ft(3)p eop %%Page: 4 4 4 3 bop -150 -83 a Ft(tends)39 b(to)g(in\014nit)n(y)-7 b(.)70 b(This)39 b(e\013ect)g(is)g(clearly)e(visible)i(in)g(Figs.)-150 17 y(1)g(and)g(2:)61 b(When)40 b Fn(r)521 29 y Fl(s)599 17 y Fh(!)j Ft(0,)f Fn(F)885 29 y Fp(X)o(C)969 17 y Ft(\()p Fn(r)1038 29 y Fl(s)1074 17 y Fn(;)14 b(\020)6 b(;)14 b(s)p Ft(\))43 b Fh(!)g Fn(F)1483 29 y Fp(X)1529 17 y Ft(\()p Fn(\020)6 b(;)14 b(s)p Ft(\),)43 b(the)-150 116 y(enhancemen)n(t)37 b(factor)f(for)g(exc)n(hange)g(alone;)k(when)d Fn(s)i Fh(!)f(1)p Ft(,)-150 216 y(again)g Fn(F)136 228 y Fp(X)o(C)219 216 y Ft(\()p Fn(r)288 228 y Fl(s)325 216 y Fn(;)14 b(\020)6 b(;)14 b(s)p Ft(\))42 b Fh(!)g Fn(F)732 228 y Fp(X)777 216 y Ft(\()p Fn(\020)6 b(;)14 b(s)p Ft(\).)72 b(Th)n(us)39 b(correlation)e(turns)-150 315 y(o\013)26 b(relativ)n(e)f(to)h(exc)n(hange)f(in)i(these)f(limits,) h(and)f(also)f(w)n(eak)n(ens)-150 415 y(relativ)n(e)31 b(to)h(exc)n(hange)e(when)i Fh(j)p Fn(\020)6 b Fh(j)33 b Ft(increases)d(from)i(0)f(to)h(1.)49 b(Of)-150 515 y(course,)36 b(the)f(e\013ects)g(of)g(increasing)e Fh(j)p Fn(\020)6 b Fh(j)36 b Ft(follo)n(w)e(directly)h(from)-150 614 y(the)e(P)n(auli)g(exclusion)f(principle,)j(whic)n(h)e(k)n(eeps)f (the)h(electrons)-150 714 y(apart)j(rather)h(e\016cien)n(tly)g(in)h (the)f(spin-p)r(olarized)f(case,)j(th)n(us)-150 814 y(reducing)27 b(additional)h(correlation)e(e\013ects.)39 b(W)-7 b(e)28 b(shall)g(con\014rm)-150 913 y(these)20 b(exp)r(ectations)f(ab)r(out)g Fn(E)817 925 y Fp(C)881 913 y Ft(and)g Fn(E)1095 925 y Fp(X)1160 913 y Ft(in)h(Eqs.)e(\(19\))h(and)h(\(20\))-150 1013 y(b)r(elo)n(w.)39 b(Moreo)n(v)n(er,)26 b Fn(F)562 1025 y Fp(X)o(C)645 1013 y Ft(\()p Fn(r)714 1025 y Fl(s)751 1013 y Fn(;)14 b(\020)6 b(;)14 b(s)p Ft(\))28 b(decreases)f(with)i (decreasing)-150 1112 y Fn(r)-113 1124 y Fl(s)-77 1112 y Ft(,)f(so)f(the)h(curv)n(es)e(of)i(Fig.)f(1)g(nev)n(er)g(cross.)-67 1212 y(Th)n(us)e(far,)h(w)n(e)f(ha)n(v)n(e)f(explained:)36 b(\(1\))26 b(wh)n(y)f(the)h Fn(r)1485 1224 y Fl(s)1544 1212 y Ft(=)c(0)j(curv)n(e)-150 1312 y(in)32 b(Fig.)g(1)f(rises)g(with) i(increasing)d Fn(s)p Ft(,)j(\(2\))f(wh)n(y)g(the)g(curv)n(es)f(for) -150 1411 y(successiv)n(ely)f(bigger)f Fn(r)594 1423 y Fl(s)662 1411 y Ft(start)h(higher,)h(rise)g(less)g(steeply)-7 b(,)32 b(and)-150 1511 y(ev)n(en)n(tually)c(join)h(the)g Fn(r)594 1523 y Fl(s)655 1511 y Ft(=)24 b(0)k(curv)n(e)g(as)g Fn(s)d Fh(!)g(1)p Ft(,)k(and)g(\(3\))g(wh)n(y)-150 1611 y(these)23 b(curv)n(es)f(nev)n(er)h(cross.)34 b(W)-7 b(e)23 b(ha)n(v)n(e)f(also)g(explained)h(\(4\))h(wh)n(y)-150 1710 y(the)32 b(small-)p Fn(r)252 1722 y Fl(s)320 1710 y Ft(curv)n(es)e(of)i(Fig.)g(2)g(are)f(p)r(ositiv)n(e,)i(and)f(lie)g (ab)r(o)n(v)n(e)-150 1810 y(the)c(large-)p Fn(r)235 1822 y Fl(s)297 1810 y Ft(curv)n(es.)-67 1910 y(T)-7 b(o)23 b(explain)h(the)g(other)f(qualitativ)n(e)f(features)i(of)f(Figs.)g(1)h (and)-150 2009 y(2,)j(esp)r(ecially)g(the)h Fn(r)496 2021 y Fl(s)555 2009 y Fh(!)23 b(1)28 b Ft(b)r(eha)n(viors,)e(w)n(e)h (note)h(that)218 2235 y Fn(E)279 2247 y Fp(X)o(C)385 2235 y Ft(=)23 b Fn(N)562 2122 y Fk(Z)645 2143 y Fm(1)608 2311 y Fj(0)730 2235 y Fn(du)k Ft(4)p Fn(\031)s(u)988 2201 y Fj(2)1034 2179 y Fh(h)p Fn(n)1116 2191 y Fp(X)o(C)1200 2179 y Ft(\()p Fn(u)p Ft(\))p Fh(i)p 1034 2216 310 4 v 1145 2292 a Ft(2)p Fn(u)1354 2235 y(;)368 b Ft(\(16\))-150 2470 y(where)27 b Fn(N)32 b Ft(=)277 2403 y Fk(R)346 2470 y Fn(d)389 2439 y Fj(3)426 2470 y Fn(r)f(n)p Ft(\()p Fi(r)p Ft(\))d(is)f(the)h(electron)f(n)n(um)n(b)r(er)h(and)-54 2700 y Fh(h)p Fn(n)28 2712 y Fp(X)o(C)111 2700 y Ft(\()p Fn(u)p Ft(\))p Fh(i)23 b Ft(=)393 2644 y(1)p 376 2681 76 4 v 376 2757 a Fn(N)476 2587 y Fk(Z)572 2700 y Fn(d)615 2666 y Fj(3)653 2700 y Fn(r)30 b(n)p Ft(\()p Fi(r)p Ft(\))887 2587 y Fk(Z)995 2644 y Fn(d)p Ft(\012)1098 2656 y Fd(u)p 995 2681 150 4 v 1023 2757 a Ft(4)p Fn(\031)1181 2700 y(n)1231 2712 y Fp(X)o(C)1314 2700 y Ft(\()p Fi(r)p Fn(;)14 b Fi(r)20 b Ft(+)e Fi(u)p Ft(\))96 b(\(17\))-150 2921 y(is)58 b(the)g(system-)f(and)g(spherical-a)n(v)n(erage)d(of)j(the)i (densit)n(y)-150 3020 y Fn(n)-100 3032 y Fp(X)o(C)-17 3020 y Ft(\()p Fi(r)p Fn(;)14 b Fi(r)25 b Ft(+)e Fi(u)p Ft(\))36 b(at)f Fi(r)24 b Ft(+)f Fi(u)36 b Ft(of)f(the)h(exc)n (hange-correlation)c(hole)-150 3120 y(around)23 b(an)h(electron)g(at)g Fi(r)h Ft([8,25],)f(whic)n(h)g(ob)r(eys)g(the)h(sum)f(rule)292 3236 y Fk(Z)375 3257 y Fm(1)338 3425 y Fj(0)459 3349 y Fn(du)j Ft(4)p Fn(\031)s(u)717 3315 y Fj(2)754 3349 y Fh(h)p Fn(n)836 3361 y Fp(X)o(C)919 3349 y Ft(\()p Fn(u)p Ft(\))p Fh(i)c Ft(=)g Fh(\000)p Ft(1)p Fn(:)441 b Ft(\(18\))-150 3579 y(Eq.)39 b(\(18\))h(asserts)e(that)i(an)f (electron)g(at)h Fi(r)g Ft(is)g(missing)f(from)-150 3678 y(the)h(rest)f(of)g(the)h(system.)72 b(As)40 b(a)f(consequence)f(of)h (the)h(con-)-150 3778 y(strain)n(t)34 b(\(18\))g(and)h(of)g(the)g (extra)f(factor)f(of)i(1)p Fn(=u)f Ft(in)h(Eq.)f(\(16\),)-150 3878 y(the)42 b(exc)n(hange-correlation)c(energy)j Fn(E)1133 3890 y Fp(X)o(C)1258 3878 y Ft(of)h(Eq.)f(\(16\))h(t)n(ypi-)-150 3977 y(cally)32 b(b)r(ecomes)g(more)g(negativ)n(e)f(when)i(the)g (system-a)n(v)n(eraged)-150 4077 y(hole)39 b Fh(h)p Fn(n)119 4089 y Fp(X)o(C)203 4077 y Ft(\()p Fn(u)p Ft(\))p Fh(i)h Ft(b)r(ecomes)f(deep)r(er)h(at)g(small)f(in)n(ter-electronic)-150 4176 y(separations)27 b Fn(u)p Ft(,)i(and)g(less)f(negativ)n(e)g(when)h (this)g(hole)g(b)r(ecomes)-150 4276 y(shallo)n(w)n(er.)-67 4376 y(The)44 b(small-)p Fn(u)f Ft(b)r(eha)n(vior)f(of)i Fn(n)945 4388 y Fp(X)o(C)1028 4376 y Ft(\()p Fi(r)p Fn(;)14 b Fi(r)30 b Ft(+)f Fi(u)p Ft(\))44 b(has)f(a)g(quasi-)-150 4475 y(univ)n(ersal)32 b(dep)r(endence)h(up)r(on)g(the)h(lo)r(cal)e (spin)h(densities)g(at)g Fi(r)-150 4575 y Ft(and)39 b(their)g(gradien)n (ts)f([8].)72 b(In)39 b(the)h(lo)n(w-densit)n(y)e(\()p Fn(r)1573 4587 y Fl(s)1652 4575 y Fh(!)k(1)p Ft(\))-150 4675 y(or)29 b(strong-coupling)f(limit,)j(the)g(system)e(is)h (maximally)f(corre-)-150 4774 y(lated)35 b(in)h(the)f(sense)g(that)g (all)g(other)g(electrons)f(are)g(excluded)-150 4874 y(from)27 b(the)g(vicinit)n(y)g(of)g(a)f(giv)n(en)h(electron,)f(i.e.,)h(w)n(e)g (exp)r(ect)g(that)-150 4973 y Fn(n)-100 4985 y Fp(X)o(C)-17 4973 y Ft(\()p Fi(r)p Fn(;)14 b Fi(r)25 b Ft(+)e Fi(u)p Ft(\))38 b(=)e Fh(\000)p Fn(n)p Ft(\()p Fi(r)24 b Ft(+)g Fi(u)p Ft(\))36 b(for)g(small)f Fn(u)p Ft(.)62 b(T)-7 b(a)n(ylor)34 b(expan-)-150 5073 y(sion)c(of)g(this)h(hole)f(to)h (order)e Fn(u)837 5043 y Fj(2)904 5073 y Ft(and)h(in)n(tegration)f(of)i (Eq.)f(\(17\))-150 5173 y(b)n(y)36 b(parts)g(on)g Fi(r)h Ft(then)g(yields)g(the)f(lo)n(w-densit)n(y)g(limit)h(for)f(the)-150 5272 y(system-a)n(v)n(eraged)24 b(hole)2064 -21 y Fh(h)p Fn(n)2146 -9 y Fp(X)o(C)2229 -21 y Ft(\()p Fn(u)p Ft(\))p Fh(i)f Ft(=)2511 -77 y(1)p 2494 -40 76 4 v 2494 36 a Fn(N)2594 -134 y Fk(Z)2690 -21 y Fn(d)2733 -55 y Fj(3)2771 -21 y Fn(r)30 b(n)2962 -77 y Ft(3)p 2898 -40 169 4 v 2898 36 a(4)p Fn(\031)s(r)3029 12 y Fj(3)3027 57 y Fl(s)3091 -163 y Fk(")3139 -21 y Fh(\000)p Ft(1)18 b(+)3347 -138 y Fk(\022)3418 -77 y Fn(\013u)p 3418 -40 101 4 v 3432 36 a(r)3469 48 y Fl(s)3529 -138 y Fk(\023)3590 -121 y Fj(2)3651 -77 y Ft(2)p 3651 -40 42 4 v 3651 36 a(3)3702 -21 y Fn(s)3741 -55 y Fj(2)3797 -21 y Ft(+)g Fn(:)c(:)g(:)3977 -163 y Fk(#)4039 -21 y Fn(:)3937 203 y Ft(\(19\))2042 378 y(While)36 b(the)g(on-top)f(\()p Fn(u)h Ft(=)f(0\))h(hole)f(is)g (negativ)n(e,)i(the)f(leading)2042 477 y(inhomogeneit)n(y)24 b(correction)f(to)i(it)g(for)g(small)f Fn(u)h Ft(is)g(p)r(ositiv)n(e,)g (i.e,)2042 577 y(inhomogeneit)n(y)e(mak)n(es)f(the)j(hole)e(shallo)n(w) n(er)f(at)h(small)h Fn(u)p Ft(.)35 b(This)2042 676 y(suggests)26 b(that,)i(in)g(the)g Fn(r)2846 688 y Fl(s)2905 676 y Fh(!)23 b(1)28 b Ft(limit,)g Fh(j)p Fn(E)3427 688 y Fp(X)o(C)3511 676 y Fh(j)g Ft(decreases)e(with)2042 776 y(increasing)42 b(inhomogeneit)n(y)h Fn(s)p Ft(.)85 b(This)44 b(exp)r(ectation)f(is)h (con-)2042 876 y(\014rmed)25 b(in)h(Fig.)f(1,)h(where)f(the)h Fn(r)3067 888 y Fl(s)3126 876 y Fh(!)d(1)i Ft(curv)n(e)g(actually)g(b)r (ends)2042 975 y(do)n(wn)n(w)n(ard)g(with)i(increasing)f Fn(s)p Ft(,)h(re\015ecting)f(the)i(dominance)e(of)2042 1075 y(the)34 b(correlation-lik)n(e)c(nonlo)r(calit)n(y)j(in)g(the)h (lo)n(w-densit)n(y)e(limit.)2042 1175 y(Moreo)n(v)n(er,)22 b(the)j(result)f(of)g(Eq.)g(\(19\))g(is)h(indep)r(enden)n(t)g(of)f Fn(\020)6 b Ft(,)26 b(sug-)2042 1274 y(gesting)k(that)g(the)h Fn(r)2692 1286 y Fl(s)2756 1274 y Fh(!)d(1)j Ft(curv)n(e)e(of)i(Fig.)f (2)g(should)g(lie)h(near)2042 1374 y(zero,)26 b(as)h(it)h(do)r(es)g (for)f Fn(s)2802 1353 y(<)2802 1399 y Fh(\030)2889 1374 y Ft(1.)2125 1473 y(W)-7 b(e)35 b(ha)n(v)n(e)e(already)g(explained)h (wh)n(y)g Fn(F)3386 1485 y Fp(X)3432 1473 y Ft(,)i(the)f(high-densit)n (y)2042 1573 y(limit)d(of)g Fn(F)2396 1585 y Fp(X)o(C)2479 1573 y Ft(,)h(dep)r(ends)f(as)g(it)g(do)r(es)f(up)r(on)h Fn(\020)38 b Ft(and)32 b Fn(s)p Ft(.)49 b(A)32 b(more)2042 1673 y(detailed)42 b(v)n(ersion)e(of)i(this)g(explanation)g(requires)e (the)j(high-)2042 1772 y(densit)n(y)33 b(analog)f(of)h(Eq.)g(\(19\).)54 b(The)34 b(gradien)n(t)e(expansion)h(for)2042 1872 y(the)c(exc)n(hange) e(hole)h(densit)n(y)g([5],)g(expanded)h(to)f(order)f Fn(u)3885 1842 y Fj(2)3950 1872 y Ft(and)2042 1972 y(spin-scaled)f(as)h (in)h(Eq.)f(\(12\),)h(is)2050 2220 y Fh(h)p Fn(n)2132 2232 y Fp(X)2177 2220 y Ft(\()p Fn(u)p Ft(\))p Fh(i)23 b Ft(=)2459 2164 y(1)p 2442 2201 76 4 v 2442 2277 a Fn(N)2541 2107 y Fk(Z)2638 2220 y Fn(d)2681 2186 y Fj(3)2719 2220 y Fn(r)30 b(n)2909 2164 y Ft(3)p 2846 2201 169 4 v 2846 2277 a(4)p Fn(\031)s(r)2977 2253 y Fj(3)2975 2298 y Fl(s)3025 2078 y Fk(\()3110 2220 y Fh(\000)3203 2164 y Ft(1)18 b(+)g Fn(\020)3388 2134 y Fj(2)p 3203 2201 223 4 v 3293 2277 a Ft(2)3454 2220 y(+)3537 2103 y Fk(\022)3608 2164 y Fn(\013u)p 3608 2201 101 4 v 3622 2277 a(r)3659 2289 y Fl(s)3719 2103 y Fk(\023)3780 2121 y Fj(2)3836 2220 y Fh(\002)2177 2410 y Fk(h)2226 2446 y Ft(\(1)g(+)g Fn(\020)6 b Ft(\))2475 2416 y Fj(8)p Fl(=)p Fj(3)2599 2446 y Ft(+)18 b(\(1)g Fh(\000)g Fn(\020)6 b Ft(\))2931 2416 y Fj(8)p Fl(=)p Fj(3)p 2226 2484 811 4 v 2589 2560 a Ft(20)3064 2503 y Fh(\000)3161 2446 y Fn(s)3200 2416 y Fj(2)p 3157 2484 84 4 v 3157 2560 a Ft(27)3250 2503 y(\(1)19 b(+)f Fn(\020)3468 2468 y Fj(2)3505 2503 y Ft(\))3537 2410 y Fk(i)3595 2503 y Ft(+)g Fn(:)c(:)g(:)3789 2361 y Fk(\))3856 2503 y Fn(:)58 b Ft(\(20\))2042 2751 y(Eq.)49 b(\(20\))h(can)g(also)f (b)r(e)h(found)h(b)n(y)f(com)n(bining)f(the)i(exact)2042 2851 y(Eqs.)23 b(\(14\))g(and)h(\(15\))g(of)g(Ref.)g([30])f(for)g(the)i (exc)n(hange)d(hole)i(with)2042 2951 y(the)37 b(gradien)n(t)e (expansion)g(of)i(the)g(kinetic-energy)e(densit)n(y)h(of)2042 3050 y(Ref.)28 b([30],)f(in)n(tegrating)f(b)n(y)h(parts,)g(and)h (dropping)e Fh(r)p Fn(\020)35 b Ft(terms.)2125 3150 y(In)40 b(the)h Fn(r)2434 3162 y Fl(s)2514 3150 y Fh(!)i Ft(0)d(limit)h(\(and)f (also)f(in)i(the)f Fn(r)3620 3162 y Fl(s)3700 3150 y Fh(!)k(1)c Ft(and)2042 3250 y Fh(j)p Fn(\020)6 b Fh(j)31 b(!)f Ft(1)i(limits,)i(but)e(not)g(otherwise)f([34]\),)i(the)f(LSD)h (on-top)2042 3349 y(or)38 b Fn(u)j Ft(=)g(0)d(hole)g(is)h(exact.)69 b(Reducing)39 b Fn(r)3409 3361 y Fl(s)3484 3349 y Ft(or)e(increasing)h Fh(j)p Fn(\020)6 b Fh(j)2042 3449 y Ft(deep)r(ens)28 b(the)h(on-top)f(hole)g(and)g(so)g(increases)e Fh(j)p Fn(E)3634 3461 y Fp(X)o(C)3718 3449 y Fh(j)p Ft(.)39 b(F)-7 b(or)28 b Fn(\020)j Ft(=)2042 3548 y(0,)g(the)h(on-top)e(densit) n(y)h(v)-5 b(aries)30 b(from)h Fh(\000)3353 3516 y Fj(1)p 3352 3530 34 4 v 3352 3577 a(2)3395 3548 y Ft(\(3)p Fn(=)p Ft(4)p Fn(\031)s(r)3642 3518 y Fj(3)3640 3569 y Fl(s)3679 3548 y Ft(\))h(at)f Fn(r)3885 3560 y Fl(s)3949 3548 y Ft(=)e(0)2042 3648 y(to)f Fh(\000)p Ft(\(3)p Fn(=)p Ft(4)p Fn(\031)s(r)2456 3618 y Fj(3)2454 3669 y Fl(s)2493 3648 y Ft(\))h(at)g Fn(r)2694 3660 y Fl(s)2755 3648 y Ft(=)c Fh(1)p Ft(,)k(consisten)n(t)f(with)i(the)f(increase)e(of)2042 3748 y Fn(F)2095 3760 y Fp(X)o(C)2207 3748 y Ft(with)j Fn(r)2435 3760 y Fl(s)2499 3748 y Ft(sho)n(wn)e(in)i(Fig.)e(1;)h(as)g (the)g(hole)f(deep)r(ens)h(on)g(the)2042 3847 y(scale)22 b(of)h(\()p Fh(\000)p Ft(3)p Fn(=)p Ft(4)p Fn(\031)s(r)2638 3817 y Fj(3)2636 3868 y Fl(s)2675 3847 y Ft(\),)h(it)f(lo)r(calizes)f (on)h(the)h(scale)e(of)h Fn(r)3724 3859 y Fl(s)3783 3847 y Ft(and)g Fn(E)4001 3859 y Fp(X)o(C)2042 3947 y Ft(b)r(ecomes)35 b(more)g(lo)r(cal.)61 b(The)35 b(inhomogeneit)n(y)g(or)g Fn(s)3738 3917 y Fj(2)3811 3947 y Ft(term)g(of)2042 4047 y(Eq.)e(\(20\))g(is)g(negativ)n(e,)h(unlik)n(e)f(that)g(of)h(Eq.)e (\(19\).)54 b(Th)n(us,)35 b(for)2042 4146 y(su\016cien)n(tly)c(small)g Fn(r)2719 4158 y Fl(s)2755 4146 y Ft(,)h(increasing)e Fn(s)h Ft(deep)r(ens)g(the)h(hole)f(close)2042 4246 y(to)g(the)h (electron)f(and)g(so)g(increases)f Fh(j)p Fn(E)3318 4258 y Fp(X)o(C)3401 4246 y Fh(j)p Ft(,)j(as)e(sho)n(wn)g(in)g(Fig.)2042 4346 y(1.)2125 4445 y(No)n(w)24 b(restore)f(the)j(dep)r(endence)f(of)g Fn(E)3317 4457 y Fp(X)o(C)3425 4445 y Ft(up)r(on)g(fundamen)n(tal)2042 4545 y(constan)n(ts,)f(including)g Fn(a)2830 4557 y Fj(0)2890 4545 y Ft(=)f(\026)-42 b Fn(h)3025 4508 y Fj(2)3063 4545 y Fn(=me)3217 4515 y Fj(2)3253 4545 y Ft(,)25 b(and)f(expand)f(in)i(p)r (o)n(w)n(ers)2042 4644 y(of)i Fn(e)2175 4614 y Fj(2)2212 4644 y Ft(:)37 b Fn(c)23 b Fh(!)g Fn(ce)2512 4614 y Fj(2)2577 4644 y Ft(in)28 b(Eq.)f(\(4\))g(and)2096 4868 y Fn(F)2149 4880 y Fp(X)o(C)2233 4868 y Ft(\()2279 4812 y Fn(r)2316 4824 y Fl(s)p 2275 4849 82 4 v 2275 4925 a Fn(a)2319 4937 y Fj(0)2366 4868 y Fn(;)14 b(\020)6 b(;)14 b(s)p Ft(\))23 b(=)g Fn(F)2717 4880 y Fp(X)2762 4868 y Ft(\()p Fn(\020)6 b(;)14 b(s)p Ft(\))20 b(+)3047 4751 y Fk(\022)3140 4812 y Fn(r)3177 4824 y Fl(s)p 3118 4849 118 4 v 3118 4925 a Fn(ca)3198 4937 y Fj(0)3245 4751 y Fk(\023)3320 4868 y Fn(F)3373 4880 y Fp(C)p Fc(;)p Fp(2)3464 4868 y Ft(\()p Fn(\020)6 b(;)14 b(s)p Ft(\))20 b(+)e Fn(:)c(:)g(:)f(;)55 b Ft(\(21\))2042 5098 y(where)21 b(the)h(terms)f(in)h Fn(F)2782 5110 y Fp(X)o(C)2888 5098 y Ft(of)f(zero-th)g(and)h(\014rst)f (order)g(in)h Fn(e)3915 5067 y Fj(2)3973 5098 y Ft(are)2042 5197 y(sho)n(wn)31 b(explicitly)-7 b(.)52 b(The)33 b(function)g Fn(F)3257 5209 y Fp(C)p Fl(;)p Fj(2)3354 5197 y Ft(\()p Fn(\020)6 b(;)14 b(s)p Ft(\))33 b(is)f(w)n(ell-de\014ned)2042 5297 y(in)e(PBE,)g(and)g(is)g(giv)n(en)g(b)n(y)g(Eq.)g(\(9\))g(of)g (Ref.)h([9].)45 b(As)31 b Fn(s)c Fh(!)h(1)p Ft(,)2042 5396 y Fn(F)2095 5408 y Fp(C)p Fc(;)p Fp(2)2209 5396 y Fh(!)c Ft(0)e(as)h(exp)r(ected.)36 b(As)23 b Fn(s)g Fh(!)g Ft(0,)h Fn(F)3283 5408 y Fp(C)p Fc(;)p Fp(2)3398 5396 y Ft(div)n(erges)e(lik)n(e)h Fh(\000)14 b Ft(ln)f Fn(s)p Ft(,)1946 5645 y(4)p eop %%Page: 5 5 5 4 bop -150 -83 a Ft(leading)35 b(to)h(the)g(non-analytic)f(dep)r (endence)h(up)r(on)g Fn(e)1601 -113 y Fj(2)1674 -83 y Ft(of)g(the)-150 17 y(correlation)26 b(energy)g(for)h(the)h(uniform)g (gas.)-67 116 y(Under)g(the)h(uniform)g(scaling)e(\(Eq.)h(\(9\)\))h(of) g(a)f(\014nite)h(system)-150 216 y(to)c(the)g(high-densit)n(y)f(limit)h (\()p Fn(r)821 228 y Fl(s)880 216 y Fh(!)e Ft(0\),)j(w)n(e)e(\014nd)h (that)g Fn(E)1629 228 y Fp(C)1698 216 y Ft(tends)-150 315 y(to)i(a)h(negativ)n(e)e(constan)n(t,)234 547 y Fn(E)295 559 y Fp(C)362 547 y Fh(!)d(\000)543 491 y Fn(me)655 460 y Fj(4)p 543 528 149 4 v 575 612 a Ft(\026)-42 b Fn(h)623 575 y Fj(2)716 434 y Fk(Z)812 547 y Fn(d)855 512 y Fj(3)893 547 y Fn(r)30 b(nF)1063 559 y Fp(C)p Fc(;)p Fp(2)1155 547 y Ft(\()p Fn(\020)6 b(;)14 b(s)p Ft(\))p Fn(;)385 b Ft(\(22\))-150 772 y(as)30 b(required)h(b)n(y)f(a)h(theorem) g(of)g(Levy)f(\(Eq.)h(\(4\))g(of)g(Ref.)h([35]\).)-150 871 y(Moreo)n(v)n(er,)g(the)i(constan)n(t)f(of)h(Eq.)f(\(22\))g(seems)g (to)h(b)r(e)g(correct)-150 971 y(for)e Fn(N)9 b Ft(-electron)30 b(atoms)i(with)g Fn(N)40 b Ft(=)30 b(2)p Fn(;)14 b Ft(3)p Fn(;)g Ft(9)p Fn(;)g Ft(10,)30 b(and)i(11)f(when)-150 1071 y(the)d(n)n(uclear)e(c)n(harge)g Fn(Z)j Fh(!)23 b(1)28 b Ft([36].)-67 1170 y(In)40 b(the)g(opp)r(osite)g(or)f(lo)n (w-densit)n(y)g(limit)h(\()p Fn(r)1389 1182 y Fl(s)1469 1170 y Fh(!)k(1)p Ft(\),)f(the)-150 1270 y(Thomas-F)-7 b(ermi)20 b(screening)g(length)h Fh(/)i Ft(\()p Fn(a)1164 1282 y Fj(0)1201 1270 y Fn(r)1238 1282 y Fl(s)1274 1270 y Ft(\))1306 1240 y Fj(1)p Fl(=)p Fj(2)1432 1270 y Ft(mak)n(es)d(an)h (ex-)-150 1370 y(plicit)33 b(app)r(earance)e(in)i(the)g(uniform-gas)e (correlation)f(energy)-7 b(,)-150 1469 y(and)-139 1682 y Fn(F)-86 1694 y Fp(X)o(C)-2 1682 y Ft(\()44 1626 y Fn(r)81 1638 y Fl(s)p 40 1663 82 4 v 40 1739 a Fn(a)84 1751 y Fj(0)131 1682 y Fn(;)14 b(\020)6 b(;)14 b(s)p Ft(\))24 b Fh(!)f Fn(F)501 1694 y Fp(X)o(C)584 1682 y Ft(\()p Fh(1)p Fn(;)14 b(\020)6 b(;)14 b(s)p Ft(\))20 b Fh(\000)989 1567 y Fk(r)p 1072 1567 102 4 v 1082 1626 a Fn(a)1126 1638 y Fj(0)p 1082 1663 82 4 v 1086 1739 a Fn(r)1123 1751 y Fl(s)1173 1682 y Fn(K)6 b Ft(\()p Fn(\020)g(;)14 b(s)p Ft(\))k(+)h Fn(:)14 b(:)g(:)41 b(:)50 b Ft(\(23\))-150 1917 y(A)n(t)41 b Fn(s)j Ft(=)g(0,)f(the)e(\014rst)f (and)g(second)g(terms)g(of)h(Eq.)e(\(23\))h(are)-150 2016 y(analogs)31 b(of)j(the)f(classical)f(and)h(zero-p)r(oin)n (t-vibrational)d(ener-)-150 2116 y(gies)37 b(of)i(a)e(Wigner)h (crystal.)68 b(Indeed)38 b(Eq.)g(\(18\))f(of)i(Ref.)f([29])-150 2216 y(sho)n(ws)h(that)i(none)f(of)g(the)h(\014rst)f(but)h(half)f(of)g (the)h(second)f(is)-150 2315 y(kinetic)30 b(energy)g(of)g(correlation.) 43 b(Eq.)29 b(\(23\))h(explains)g(wh)n(y)g(the)-150 2415 y(curv)n(es)21 b(in)i(Fig.)g(1)f(approac)n(h)e(their)j Fn(r)1003 2427 y Fl(s)1062 2415 y Ft(=)g Fh(1)f Ft(asymptote)g(slo)n (wly)-7 b(.)-150 2514 y(The)24 b(v)-5 b(alue)24 b(of)g(the)h(asymptote) e Fn(F)912 2526 y Fp(X)o(C)996 2514 y Ft(\()p Fn(r)1065 2526 y Fl(s)1124 2514 y Ft(=)g Fh(1)p Fn(;)14 b(\020)6 b(;)14 b(s)23 b Ft(=)f(0\))i(can)g(b)r(e)-150 2614 y(estimated)h(as)f (0.9/c)f(=)h(1.96,)g(whic)n(h)h(accoun)n(ts)e(for)i(the)g(factor-)-150 2714 y(of-t)n(w)n(o)i(v)-5 b(ariation)26 b(of)i(the)g(curv)n(es)f(in)h (Fig.)g(1.)37 b(T)-7 b(o)28 b(mak)n(e)f(the)h(es-)-150 2813 y(timate,)j(replace)d(the)j(strong)d(correlation)g(of)i(the)g(lo)n (w-densit)n(y)-150 2913 y(uniform)23 b(electron)g(gas)f(b)n(y)g(the)i (p)r(erfect)g(correlation)d(of)i(a)g(close-)-150 3013 y(pac)n(k)n(ed)28 b(Wigner)h(crystal,)g(and)h(appro)n(ximate)d(the)j (energy)e(p)r(er)-150 3112 y(electron)f(as)g Fh(\000)p Ft(9)p Fn(e)412 3082 y Fj(2)448 3112 y Fn(=)p Ft(10)p Fn(r)611 3124 y Fl(s)645 3112 y Ft(,)h(the)g(electrostatic)f(energy)g (of)g(a)h(neu-)-150 3212 y(tral)c(spherical)f(unit)i(cell)g(of)f (radius)g Fn(r)1039 3224 y Fl(s)1075 3212 y Ft(.)36 b(The)24 b(latter)g(is)g(the)h(sum)-150 3311 y(of)34 b(the)h(the)g (self-repulsion)e(\(3)p Fn(e)872 3281 y Fj(2)909 3311 y Fn(=)p Ft(5)p Fn(r)1030 3323 y Fl(s)1065 3311 y Ft(\))h(of)h(the)f (sphere)g(of)g(uni-)-150 3411 y(form)26 b(p)r(ositiv)n(e)g(bac)n (kground)f(and)h(its)h(in)n(teraction)f(\()p Fh(\000)p Ft(3)p Fn(e)1668 3381 y Fj(2)1704 3411 y Fn(=)p Ft(2)p Fn(r)1825 3423 y Fl(s)1860 3411 y Ft(\))-150 3511 y(with)i(the)g (electron)f(at)g(its)h(cen)n(ter.)-67 3610 y(W)-7 b(e)19 b(ha)n(v)n(e)f(argued)g(that)h(an)f(exc)n(hange-lik)n(e)f(nonlo)r (calit)n(y)h(dom-)-150 3710 y(inates)i(as)f Fn(r)214 3722 y Fl(s)273 3710 y Fh(!)24 b Ft(0,)d(while)f(an)g(opp)r(osite)g (correlation-lik)n(e)d(nonlo-)-150 3810 y(calit)n(y)22 b(dominates)f(as)h Fn(r)596 3822 y Fl(s)655 3810 y Fh(!)h(1)p Ft(.)35 b(F)-7 b(or)22 b(small)g(reduced)g(gradien)n(ts)-150 3909 y(\()p Fn(s)-51 3888 y(<)-51 3934 y Fh(\030)41 3909 y Ft(1\),)31 b(the)f(cancellation)g(b)r(et)n(w)n(een)g(these)g(nonlo)r (calities)g(for)-150 4009 y(v)-5 b(alence)19 b(electron)f(densities)i (\(2)862 3988 y Fn(<)862 4034 y Fh(\030)949 4009 y Fn(r)986 4021 y Fl(s)1045 3988 y Fn(<)1045 4034 y Fh(\030)1133 4009 y Ft(10\),)g(as)f(sho)n(wn)f(in)i(Figs.)-150 4108 y(1)27 b(and)g(2,)g(is)g(striking.)36 b(The)27 b(same)g(cancellation)f (o)r(ccurs)h(in)g(the)-150 4208 y(linear)i(resp)r(onse)g(of)h(the)h (spin-unp)r(olarized)e(uniform)h(electron)-150 4308 y(gas,)20 b(where)g(the)g(resp)r(onse)f Fn(\016)s(v)786 4320 y Fp(X)o(C)869 4308 y Ft(\()p Fi(r)p Ft(\))24 b(=)f Fn(\016)s(v)1164 4320 y Fp(X)o(C)1247 4308 y Ft(\()p Fi(q)p Ft(\))14 b(cos\()p Fi(q)s Fh(\001)s Fi(r)p Ft(\))21 b(of)f(the)-150 4407 y(exc)n(hange-correlation)i(p)r(oten)n(tial)k Fn(v)1008 4419 y Fp(X)o(C)1091 4407 y Ft(\()p Fi(r)p Ft(\))e(=)f Fn(\016)s(E)1407 4419 y Fp(X)o(C)1490 4407 y Fn(=\016)s(n)p Ft(\()p Fi(r)p Ft(\))j(to)g(a)-150 4507 y(densit)n(y)h(w)n(a)n(v)n(e)f Fn(\016)s(n)p Ft(\()p Fi(r)p Ft(\))e(=)f Fn(\016)s(n)p Ft(\()p Fi(q)p Ft(\))14 b(cos\()p Fi(q)19 b Fh(\001)g Fi(r)p Ft(\))28 b(of)g(small)f(amplitude)-150 4607 y Fn(\016)s(n)p Ft(\()p Fi(q)p Ft(\))i(and)e(w)n(a)n(v)n(ev)n(ector)e Fi(q)j Ft(is)136 4811 y Fn(\016)s(v)216 4823 y Fp(X)o(C)300 4811 y Ft(\()p Fi(q)p Ft(\))c(=)f Fh(\000)624 4754 y Fn(\031)p 601 4791 99 4 v 601 4868 a(k)647 4839 y Fj(2)644 4892 y Fl(F)708 4811 y Fn(\015)751 4823 y Fp(X)o(C)835 4811 y Ft(\()p Fn(r)904 4823 y Fl(s)940 4811 y Fn(;)14 b(q)s(=)p Ft(2)p Fn(k)1144 4823 y Fl(F)1198 4811 y Ft(\))p Fn(\016)s(n)p Ft(\()p Fi(q)p Ft(\))p Fn(;)288 b Ft(\(24\))-150 5041 y(where)42 b(w)n(e)h(ha)n(v)n(e)e(returned)i(to)g(atomic)f(units.) 83 b(The)43 b(co)r(e\016-)-150 5141 y(cien)n(t)38 b(of)f Fn(\016)s(n)p Ft(\()p Fi(q)p Ft(\))h(in)g(Eq.)f(\(24\))g(is)h(simply)f (the)h(F)-7 b(ourier)36 b(trans-)-150 5240 y(form)46 b(with)g(resp)r(ect)g(to)g Fi(r)31 b Fh(\000)g Fi(r)900 5210 y Fm(0)969 5240 y Ft(of)46 b(the)h(second)e(functional)-150 5340 y(deriv)-5 b(ativ)n(e)36 b Fn(\016)280 5310 y Fj(2)317 5340 y Fn(E)378 5352 y Fp(X)o(C)461 5340 y Fn(=\016)s(n)p Ft(\()p Fi(r)p Ft(\))p Fn(\016)s(n)p Ft(\()p Fi(r)857 5310 y Fm(0)882 5340 y Ft(\).)64 b(W)-7 b(e)37 b(note)f(that)h Fn(s)f Ft(is)h(small)2042 -83 y(either)47 b(for)g(a)g(slo)n(w)f(densit) n(y)i(v)-5 b(ariation)46 b(\()p Fn(q)59 b Fh(!)e Ft(0\))47 b(of)g(arbi-)2042 17 y(trary)38 b(amplitude)i(or)e(for)h(a)g (small-amplitude)g(densit)n(y)g(v)-5 b(ari-)2042 116 y(ation)32 b(\()p Fn(\016)s(n)p Ft(\()p Fi(q)p Ft(\))i Fh(!)e Ft(0\))h(of)g(arbitrary)e(rapidit)n(y)-7 b(.)53 b(The)33 b(restricted)2042 216 y(GGA)k(form)f(cannot)f(describ)r(e)h(b) r(oth)h(these)f(limits)h(p)r(erfectly)-7 b(.)2042 315 y(The)38 b(linear-resp)r(onse)f(limit)i(is)f(ph)n(ysically)g(more)g (imp)r(ortan)n(t)2042 415 y(than)29 b(the)h(slo)n(wly-v)-5 b(arying)27 b(limit;)j(for)f(example,)h(the)f(resp)r(onse)2042 515 y(function)f Fn(\015)2410 527 y Fp(X)o(C)2521 515 y Ft(con)n(tributes)e(a)h(lo)r(cal)g(\014eld)h(factor)f Fn(\015)3678 527 y Fp(X)o(C)3761 515 y Ft(\()p Fn(q)s(=)p Ft(2)p Fn(k)3960 527 y Fl(F)4015 515 y Ft(\))4047 485 y Fj(2)2042 614 y Ft(to)d(the)i(screening)d(of)i(a)f(lo)r(cal)h (pseudop)r(oten)n(tial)f(in)h(a)f(bulk)h(sim-)2042 714 y(ple)j(metal)f([37,38].)35 b(Fig.)28 b(3)f(compares)f Fn(\015)3348 726 y Fp(X)o(C)3459 714 y Ft(in)i(the)g(LSD,)2119 897 y Fn(\015)2167 862 y Fl(LS)s(D)2162 917 y Fp(X)o(C)2317 897 y Ft(\()p Fn(r)2386 909 y Fl(s)2422 897 y Ft(\))23 b(=)g Fn(\015)2608 909 y Fp(X)o(C)2691 897 y Ft(\()p Fn(r)2760 909 y Fl(s)2796 897 y Fn(;)14 b(q)26 b Ft(=)d(0\))2477 1074 y(=)g(1)18 b(+)2708 957 y Fk(\022)2779 1018 y Ft(4)p Fn(\013)2874 988 y Fj(2)p 2779 1055 133 4 v 2803 1131 a Ft(27)2921 957 y Fk(\023)3024 1074 y Fn(r)3063 1040 y Fj(2)3061 1095 y Fl(s)3142 957 y Fk(\022)3203 1074 y Ft(2)3255 1018 y Fn(d")3337 1030 y Fp(C)p 3255 1055 126 4 v 3260 1131 a Fn(dr)3340 1143 y Fl(s)3409 1074 y Fh(\000)g Fn(r)3529 1086 y Fl(s)3575 1018 y Fn(d)3618 988 y Fj(2)3655 1018 y Fn(")3694 1030 y Fp(C)p 3575 1055 164 4 v 3596 1131 a Fn(dr)3678 1107 y Fj(2)3676 1152 y Fl(s)3748 957 y Fk(\023)3937 1074 y Ft(\(25\))2042 1307 y(with)28 b Fn(")2270 1319 y Fl(c)2326 1307 y Ft(=)23 b(\()p Fh(\000)p Fn(c=r)2626 1319 y Fl(s)2661 1307 y Ft(\))p Fn(F)2746 1319 y Fp(C)2791 1307 y Ft(\()p Fn(r)2860 1319 y Fl(s)2896 1307 y Fn(;)14 b Ft(0)p Fn(;)g Ft(0\),)27 b(and)g(in)h(the)g(GGA,)2051 1497 y Fn(\015)2099 1462 y Fl(GGA)2094 1517 y Fp(X)o(C)2256 1497 y Ft(\()p Fn(r)2325 1509 y Fl(s)2361 1497 y Fn(;)14 b(q)s Ft(\))23 b(=)g Fn(\015)2629 1462 y Fl(LS)s(D)2624 1517 y Fp(X)o(C)2778 1497 y Ft(\()p Fn(r)2847 1509 y Fl(s)2884 1497 y Ft(\))18 b Fh(\000)g Ft(24)p Fn(\031)s Ft(\(3)p Fn(\031)3275 1462 y Fj(2)3312 1497 y Ft(\))3344 1462 y Fj(1)p Fl(=)p Fj(3)3449 1497 y Fn(C)3508 1509 y Fp(X)o(C)3591 1497 y Ft(\()p Fn(r)3660 1509 y Fl(s)3696 1497 y Ft(\)\()p Fn(q)s(=)p Ft(2)p Fn(k)3927 1509 y Fl(F)3982 1497 y Ft(\))4014 1462 y Fj(2)4052 1497 y Fn(;)3937 1646 y Ft(\(26\))2042 1829 y(to)i(the)h(essen)n(tially)e(exact)g Fn(\015)2916 1841 y Fp(X)o(C)3020 1829 y Ft(from)h(a)g(Quan)n(tum)g(Mon)n(te)g(Carlo)2042 1928 y(sim)n(ulation)37 b([39].)66 b(In)38 b(Eq.)f(\(26\),)i Fn(C)3219 1940 y Fp(X)o(C)3303 1928 y Ft(\()p Fn(r)3372 1940 y Fl(s)3408 1928 y Ft(\))f(is)f(the)h(co)r(e\016cien)n(t)2042 2028 y(of)30 b Fh(jr)p Fn(n)p Fh(j)2304 1998 y Fj(2)2341 2028 y Fn(=n)2433 1998 y Fj(4)p Fl(=)p Fj(3)2568 2028 y Ft(in)g(the)h(second-order)d(gradien)n(t)h(expansion)g(of)2042 2128 y Fn(E)2103 2140 y Fp(X)o(C)2186 2128 y Ft([)p Fn(n=)p Ft(2)p Fn(;)14 b(n=)p Ft(2].)82 b(Small)43 b Fn(\016)s(n)p Ft(\()p Fi(q)p Ft(\))h(implies)f(small)g Fn(s)p Ft(,)k(so)42 b(ev)n(ery)2042 2227 y(GGA)23 b(reduces)g(to)f(its)i(o)n(wn)e (second-order)e(gradien)n(t)i(expansion)2042 2327 y(in)33 b(this)g(linear-)f(resp)r(onse)f(limit.)53 b(The)33 b(PBE)f(GGA)h(w)n (as)f(con-)2042 2427 y(structed)e(so)g(that)g(its)h(gradien)n(t)e(co)r (e\016cien)n(t)h Fn(C)3551 2439 y Fp(X)3627 2427 y Ft(for)g(exc)n (hange)2042 2526 y(cancels)f(that)g(for)g(correlation,)g(and)g(th)n(us) h(its)f(linear)g(resp)r(onse)2042 2626 y(reduces)19 b(to)g(LSD,)i(whic) n(h)e(is)h(nearly)e(exact)h(for)h(the)g(uniform)f(gas.)2042 2725 y(Simple)27 b(hole)g(mo)r(dels)g(based)g(up)r(on)g(Eqs.)g(\(18\))g (and)g(\(20\),)g(suc)n(h)2042 2825 y(as)35 b(that)i(of)f(Ref.)g([30],)i (e\013ectiv)n(ely)e(also)f(yield)h(the)h(PBE)e Fn(C)4016 2837 y Fp(X)4061 2825 y Ft(,)2042 2925 y(whic)n(h)e(is)g(1.78)f(times)h (bigger)f(than)h(the)h(exact)f Fn(C)3669 2937 y Fp(X)3747 2925 y Ft(appropri-)2042 3024 y(ate)21 b(to)h(the)g(slo)n(wly-v)-5 b(arying)19 b(limit)k([40].)34 b(The)22 b(PW91)f(GGA)h(w)n(as)2042 3124 y(constrained)d(to)i(ha)n(v)n(e)e(what)i(is)f(b)r(eliev)n(ed)h ([41])f(to)g(b)r(e)i(the)f(correct)2042 3224 y(gradien)n(t)28 b(co)r(e\016cien)n(t)h Fn(C)2817 3236 y Fp(X)o(C)2901 3224 y Ft(\()p Fn(r)2970 3236 y Fl(s)3006 3224 y Ft(\))h([42])f(for)g (exc)n(hange)f(and)h(corre-)2042 3323 y(lation,)k(but)g(pro)n(vides)e (a)h(less)g(realistic)f(linear)h(resp)r(onse)f(than)2042 3423 y(the)k(PBE)e(GGA.)i(In)g(fact,)i(the)e(QMC)f(sim)n(ulation)g(sho) n(ws)f(no)2042 3522 y(trace)27 b(of)g(a)g(non-zero)f Fn(C)2809 3534 y Fp(X)o(C)2921 3522 y Ft(for)h Fn(\020)i Ft(=)23 b(0)k(and)h(2)23 b Fh(\024)f Fn(r)3621 3534 y Fl(s)3680 3522 y Fh(\024)h Ft(5.)37 b(While)2042 3622 y(the)h(gradien)n(t)e(expansion)g(of)h(the)h(hole)f(densit)n(y)g Fh(h)p Fn(n)3745 3634 y Fp(X)o(C)3829 3622 y Ft(\()p Fn(u)p Ft(\))p Fh(i)g Ft(at)2042 3722 y(small)23 b Fn(u)h Ft(yields)g(ph)n(ysically-useful)f(information,)h(the)g(gradien)n(t) 2042 3821 y(expansion)c(for)g(the)h(energy)f(often)h(do)r(es)g(not,)h (as)f(a)f(consequence)2042 3921 y(of)27 b(the)h(long)f(range)f(of)i (the)g(Coulom)n(b)f(in)n(teraction)f([41,43].)2125 4021 y(A)n(t)g(the)h(exc)n(hange-only)d(lev)n(el,)j(the)f(exact)g Fn(\015)3535 4033 y Fp(X)3606 4021 y Ft(is)h(kno)n(wn)e(and)2042 4120 y(has)i(the)h(small-)p Fn(q)i Ft(expansion)c([44]:)2202 4370 y Fn(\015)2245 4382 y Fl(x)2309 4370 y Ft(=)d(1)18 b(+)2550 4313 y(5)p 2550 4351 42 4 v 2550 4427 a(9)2615 4253 y Fk(\022)2736 4313 y Fn(q)p 2686 4351 140 4 v 2686 4427 a Ft(2)p Fn(k)2771 4439 y Fl(F)2836 4253 y Fk(\023)2897 4270 y Fj(2)2953 4370 y Ft(+)3067 4313 y(73)p 3046 4351 125 4 v 3046 4427 a(225)3194 4253 y Fk(\022)3315 4313 y Fn(q)p 3266 4351 140 4 v 3266 4427 a Ft(2)p Fn(k)3351 4439 y Fl(F)3415 4253 y Fk(\023)3477 4270 y Fj(4)3532 4370 y Ft(+)g Fn(:)c(:)g(:)42 b(:)160 b Ft(\(27\))2042 4607 y(The)28 b(GGA)g(form)g(cannot)g(pro)r(duce)f(a)h Fn(q)3329 4577 y Fj(4)3394 4607 y Ft(term,)g(but)h(the)f(PBE)2042 4707 y(GGA)k(em)n(ulates)f(the)i(exact)e Fn(\015)3028 4719 y Fp(X)3105 4707 y Ft(for)g Fn(q)s(=)p Ft(2)p Fn(k)3403 4719 y Fl(F)3487 4686 y Fn(<)3487 4732 y Fh(\030)3582 4707 y Ft(1)g(through)g(en-)2042 4807 y(hancemen)n(t)c(of)h(the)g Fn(q)2737 4777 y Fj(2)2802 4807 y Ft(term)f(b)n(y)h(the)g(factor)e (1.78.)2125 4906 y(The)36 b(second-order)e(gradien)n(t)h(con)n (tribution)h(to)g(the)h(corre-)2042 5006 y(lation)47 b(energy)g(scales)f(lik)n(e)h(exc)n(hange,)52 b(i.e.,)g(for)c Fn(s)56 b(<<)g Ft(1,)2042 5106 y Fn(F)2095 5118 y Fp(C)2182 5106 y Ft(=)43 b Fn(F)2343 5118 y Fp(C)2388 5106 y Ft(\()p Fn(r)2457 5118 y Fl(s)2493 5106 y Fn(;)14 b(\020)6 b(;)14 b Ft(0\))26 b Fh(\000)h Fn(\026\036s)2939 5075 y Fj(2)3016 5106 y Ft(where)39 b Fn(\026)44 b Ft(=)e(0)p Fn(:)p Ft(21951)37 b([45])i(and)2042 5205 y(\(in)28 b(the)g(PBE)e(of)i(Ref.)g([9]\))g Fn(F)2983 5217 y Fp(X)3051 5205 y Ft(=)23 b Fn(F)3192 5217 y Fp(X)3237 5205 y Ft(\()p Fn(\020)6 b(;)14 b Ft(0\))19 b(+)f Fn(\026\036s)3662 5175 y Fj(2)3699 5205 y Ft(,)28 b(where)2428 5388 y Fn(\036)23 b Ft(=)g([\(1)18 b(+)g Fn(\020)6 b Ft(\))2860 5354 y Fj(2)p Fl(=)p Fj(3)2984 5388 y Ft(+)18 b(\(1)g(+)g Fn(\020)6 b Ft(\))3316 5354 y Fj(2)p Fl(=)p Fj(3)3421 5388 y Ft(])p Fn(=)p Ft(2)p Fn(:)386 b Ft(\(28\))1946 5645 y(5)p eop %%Page: 6 6 6 5 bop -150 -83 a Ft(Th)n(us)33 b(these)h(gradien)n(t)f(co)r (e\016cien)n(ts)g(cancel)g(for)g(all)h Fn(\020)40 b Ft(and)33 b Fn(r)1833 -71 y Fl(s)1869 -83 y Ft(.)-150 17 y(Because)25 b(exc)n(hange)g(m)n(ust)h(dominate)g(correlation)e(\(i.e.,)j Fn(F)1742 29 y Fp(C)1809 17 y Fh(!)-150 116 y Ft(0\))37 b(as)g Fn(r)110 128 y Fl(s)185 116 y Fh(!)j Ft(0,)f(and)e(also)g(b)r (ecause)f(the)i(correlation)e(energy)-150 216 y(m)n(ust)j(b)r(e)g (negativ)n(e)e(\()p Fn(F)614 228 y Fp(C)700 216 y Fn(>)k Ft(0\),)g(the)e(second-order)e(gradien)n(t)-150 315 y(expansion)23 b(for)g(the)h(correlation)e(energy)g(\(i.e.,)j(the)f(form)n(ula)f(for) -150 415 y Fn(F)-97 427 y Fp(C)-18 415 y Ft(sho)n(wn)33 b(ab)r(o)n(v)n(e)g(Eq.)g(\(28\)\))i(m)n(ust)f(b)r(e)g(generalized.)56 b(In)34 b(the)-150 515 y(PBE)26 b(of)i(Ref.)g([9])f(this)h(is)g(ac)n (hiev)n(ed)e(b)n(y)i(writing)-69 739 y Fn(E)-3 705 y Fl(GGA)-8 760 y Fp(C)155 739 y Ft([)p Fn(n)228 751 y Fm(")266 739 y Fn(;)14 b(n)353 751 y Fm(#)391 739 y Ft(])23 b(=)525 626 y Fk(Z)622 739 y Fn(d)665 705 y Fj(3)702 739 y Fn(r)30 b(n)p Ft([)p Fn(")881 751 y Fp(C)925 739 y Ft(\()p Fn(r)994 751 y Fl(s)1030 739 y Fn(;)14 b(\020)6 b Ft(\))19 b(+)f Fn(H)7 b Ft(\()p Fn(r)1388 751 y Fl(s)1424 739 y Fn(;)14 b(\020)6 b(;)14 b(t)p Ft(\)])437 964 y(=)525 851 y Fk(Z)622 964 y Fn(d)665 930 y Fj(3)702 964 y Fn(r)30 b(n)819 847 y Fk(\024\022)924 964 y Fh(\000)1017 908 y Fn(c)p 999 945 73 4 v 999 1021 a(r)1036 1033 y Fl(s)1082 847 y Fk(\023)1157 964 y Fn(F)1210 976 y Fp(C)1254 964 y Ft(\()p Fn(r)1323 976 y Fl(s)1359 964 y Fn(;)14 b(\020)6 b(;)14 b(s)p Ft(\))1546 847 y Fk(\025)1590 964 y Fn(;)132 b Ft(\(29\))-150 1196 y(where)26 b Fn(")128 1208 y Fp(C)171 1196 y Ft(\()p Fn(r)240 1208 y Fl(s)276 1196 y Fn(;)14 b(\020)6 b Ft(\))27 b(is)f(the)g(correlation)f(energy)f(p)r(er)i (particle)g(of)g(a)-150 1296 y(uniform)i(electron)e(gas)h([3])g(and)401 1478 y Fn(t)c Ft(=)f(\()p Fn(\031)s(\013=)p Ft(4\))792 1444 y Fj(1)p Fl(=)p Fj(2)897 1478 y Fn(s=\036r)1066 1444 y Fj(1)p Fl(=)p Fj(2)1064 1498 y Fl(s)1171 1478 y Fn(:)551 b Ft(\(30\))-150 1660 y(Fig.)33 b(1)g(sho)n(ws)f(that,)j(in) e(the)h(imp)r(ortan)n(t)e(range)g Fn(r)1471 1672 y Fl(s)1539 1660 y Fh(\024)g Ft(10,)i(the)-150 1760 y(nonlo)r(calities)e(of)h(exc)n (hange)e(and)h(correlation)f(cancel)h(for)g Fn(t)g Fh(\024)-150 1859 y Ft(1)p Fn(=)p Ft(3.)44 b(As)30 b Fn(t)e Fh(!)g Ft(0,)j Fn(H)j Fh(!)28 b Ft(\(3)p Fn(=\031)813 1829 y Fj(2)850 1859 y Ft(\))p Fn(\026\036)981 1829 y Fj(3)1019 1859 y Fn(t)1049 1829 y Fj(2)1086 1859 y Ft(,)j(but)g(as)f Fn(t)e Fh(!)g(1)p Ft(,)j Fn(H)j Fh(!)-150 1959 y(\000)p Fn(")-46 1971 y Fp(C)-3 1959 y Ft(\()p Fn(r)66 1971 y Fl(s)102 1959 y Fn(;)14 b(\020)6 b Ft(\).)-150 2088 y 15998949 12120418 1973452 0 37298257 26641612 startTexFig -150 2088 a %%BeginDocument: fig3.eps 80 dict begin /s {stroke} def /l {lineto} def /m {moveto} def /t {translate} def /sw {stringwidth} def /r {rotate} def /rl {roll} def /R {repeat} def /d {rlineto} def /rm {rmoveto} def /gr {grestore} def /f {eofill} def /c {setrgbcolor} def /lw {setlinewidth} def /sd {setdash} def /cl {closepath} def /sf {scalefont setfont} def /black {0 setgray} def /box {m dup 0 exch d exch 0 d 0 exch neg d cl} def /NC{systemdict begin initclip end}def/C{NC box clip newpath}def /bl {box s} def /bf {box f} def /Y { 0 exch d} def /X { 0 d} def /mp {newpath /y exch def /x exch def} def /side {[w .77 mul w .23 mul] .385 w mul sd w 0 l currentpoint t -144 r} def /mr {mp x y w2 0 360 arc} def /m24 {mr s} def /m20 {mr f} def /mb {mp x y w2 add m w2 neg 0 d 0 w neg d w 0 d 0 w d cl} def /mt {mp x y w2 add m w2 neg w neg d w 0 d cl} def /m21 {mb f} def /m25 {mb s} def /m22 {mt f} def /m26 {mt s} def /m23 {mp x y w2 sub m w2 w d w neg 0 d cl f} def /m27 {mp x y w2 add m w3 neg w2 neg d w3 w2 neg d w3 w2 d cl s} def /m28 {mp x w2 sub y w2 sub w3 add m w3 0 d 0 w3 neg d w3 0 d 0 w3 d w3 0 d 0 w3 d w3 neg 0 d 0 w3 d w3 neg 0 d 0 w3 neg d w3 neg 0 d cl s } def /m29 {mp gsave x w2 sub y w2 add w3 sub m currentpoint t 4 {side} repeat cl fill gr} def /m30 {mp gsave x w2 sub y w2 add w3 sub m currentpoint t 5 {side} repeat s gr} def /m31 {mp x y w2 sub m 0 w d x w2 sub y m w 0 d x w2 sub y w2 add m w w neg d x w2 sub y w2 sub m w w d s} def /m2 {mp x y w2 sub m 0 w d x w2 sub y m w 0 d s} def /m5 {mp x w2 sub y w2 sub m w w d x w2 sub y w2 add m w w neg d s} def /DP {/PT exch def gsave 47.2 47.2 scale PT 1 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < AA AA 55 55 AA AA 55 55 AA AA 55 55 AA AA 55 55 AA AA 55 55 AA AA 55 55 AA AA 55 55 AA AA 55 55 > } image } if PT 2 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < BB BB EE EE BB BB EE EE BB BB EE EE BB BB EE EE BB BB EE EE BB BB EE EE BB BB EE EE BB BB EE EE > } image } if PT 3 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < FF FF BB BB FF FF EE EE FF FF BB BB FF FF EE EE FF FF BB BB FF FF EE EE FF FF BB BB FF FF EE EE > } image } if PT 4 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < DF DF BF BF 7F 7F FE FE FD FD FB FB F7 F7 EF EF DF DF BF BF 7F 7F FE FE FD FD FB FB F7 F7 EF EF > } image } if PT 5 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < 7F 7F BF B F DF DF EF EF F7 F7 FB FB FD FD FE FE 7F 7F BF BF DF DF EF EF F7 F7 FB FB FD FD FE FE > } image } if PT 6 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB > } image } if PT 7 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < FF FF FF FF FF FF 00 00 FF FF FF FF FF FF 00 00 FF FF FF FF FF FF 00 00 FF FF FF FF FF FF 00 00 > } image } if PT 8 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < EE EE 47 47 83 83 C5 C5 EE EE 5C 5C 38 38 74 74 EE EE 47 47 83 83 C5 C5 EE EE 5C 5C 38 38 74 74 > } image } if PT 9 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < EF EF EF EF D7 D7 38 38 FE FE FE FE 7D 7D 83 83 EF EF EF EF D7 D7 38 38 FE FE FE FE 7D 7D 83 83 > } image } if PT 10 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < EF EF EF EF EF EF 00 00 FE FE FE FE FE FE 00 00 EF EF EF EF EF EF 00 00 FE FE FE FE FE FE 00 00 > } image } if PT 11 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < F7 F7 B6 B6 D5 D5 E3 E3 D5 D5 B6 B6 F7 F7 FF FF 7F 7F 6B 6B 5D 5D 3E 3E 5D 5D 6B 6B 7F 7F FF FF > } image } if PT 12 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < E3 E3 DD DD BE BE BE BE BE BE DD DD E3 E3 FF FF 3E 3E DD DD EB EB EB EB EB EB DD DD 3E 3E FF FF > } image } if PT 13 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < FE FE 7D 7D BB BB D7 D7 EF EF D7 D7 BB BB 7D 7D FE FE 7D 7D BB BB D7 D7 EF EF D7 D7 BB BB 7D 7D > } image } if PT 14 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < 00 00 EE EF EE EF EE EF 0E E0 EE EE EE EE EE EE 00 EE FE EE FE EE FE EE 00 00 FE EF FE EF FE EF > } image } if PT 15 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < DD DD AA AA DD DD FF FF 77 77 AA AA 77 77 FF FF DD DD AA AA DD DD FF FF 77 77 AA AA 77 77 FF FF > } image } if PT 16 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < F1 F1 EE EE 1F 1F FF FF F1 F1 EE EE 1F 1F FF FF F1 F1 EE EE 1F 1F FF FF F1 F1 EE EE 1F 1F FF FF > } image } if PT 17 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < EE EE DD DD BB BB FF FF EE EE DD DD BB BB FF FF EE EE DD DD BB BB FF FF EE EE DD DD BB BB FF FF > } image } if PT 18 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < BB BB DD DD EE EE FF FF BB BB DD DD EE EE FF FF BB BB DD DD EE EE FF FF BB BB DD DD EE EE FF FF > } image } if PT 19 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < 1F FC 67 F3 7B EF BD DE BD DE DE BD E6 B3 F8 0F E6 B3 DE BD BD DE BD DE 7B EF 67 F3 1F FC 7F FF > } image } if PT 20 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < DD DD EE EE EE EE EE EE DD DD BB BB BB BB BB BB DD DD EE EE EE EE EE EE DD DD BB BB BB BB BB BB > } image } if PT 21 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < 0E 0E EF EF EF EF EF EF E0 E0 FE FE FE FE FE FE 0E 0E EF EF EF EF EF EF E0 E0 FE FE FE FE FE FE > } image } if PT 22 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < 70 70 F7 F7 F7 F7 F7 F7 07 07 7F 7F 7F 7F 7F 7F 70 70 F7 F7 F7 F7 F7 F7 07 07 7F 7F 7F 7F 7F 7F > } image } if PT 23 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < AA AA 55 55 A9 A9 D1 D1 E1 E1 D1 D1 A9 A9 55 55 AA AA 55 55 A9 A9 D1 D1 E1 E1 D1 D1 A9 A9 55 55 > } image } if PT 24 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < FF FE FF FC EA A8 D5 54 EA A8 D5 54 E8 28 D4 54 E8 E8 D4 D4 E8 EA 54 D5 A8 EA 54 D5 00 C0 00 80 > } image } if PT 25 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < FF FE FF FC FF F8 FF F0 F0 00 F0 00 F0 20 F0 60 F0 E0 F1 E0 F3 E0 F0 00 E0 00 C0 00 80 00 00 00 > } image } if gr } def /FA { /PT exch def gsave clip 0 0 translate 1 1 54 { 1 sub 47.2 mul /Xcurr exch def 1 1 74 { 1 sub 47.2 mul /Ycurr exch def gsave Xcurr Ycurr translate PT DP gr } for } for gr } def /reencdict 24 dict def /ReEncode {reencdict begin /nco&na exch def /nfnam exch def /basefontname exch def /basefontdict basefontname findfont def /newfont basefontdict maxlength dict def basefontdict {exch dup /FID ne {dup /Encoding eq {exch dup length array copy newfont 3 1 roll put} {exch newfont 3 1 roll put} ifelse} {pop pop} ifelse } forall newfont /FontName nfnam put nco&na aload pop nco&na length 2 idiv {newfont /Encoding get 3 1 roll put} repeat nfnam newfont definefont pop end } def /accvec [ 176 /agrave 181 /Agrave 190 /acircumflex 192 /Acircumflex 201 /adieresis 204 /Adieresis 209 /ccedilla 210 /Ccedilla 211 /eacute 212 /Eacute 213 /egrave 214 /Egrave 215 /ecircumflex 216 /Ecircumflex 217 /edieresis 218 /Edieresis 219 /icircumflex 220 /Icircumflex 221 /idieresis 222 /Idieresis 223 /ntilde 224 /Ntilde 226 /ocircumflex 228 /Ocircumflex 229 /odieresis 230 /Odieresis 231 /ucircumflex 236 /Ucircumflex 237 /udieresis 238 /Udieresis 239 /aring 242 /Aring 243 /ydieresis 244 /Ydieresis 246 /aacute 247 /Aacute 252 /ugrave 253 /Ugrave] def /Times-Roman /Times-Roman accvec ReEncode /Times-Italic /Times-Italic accvec ReEncode /Times-Bold /Times-Bold accvec ReEncode /Times-BoldItalic /Times-BoldItalic accvec ReEncode /Helvetica /Helvetica accvec ReEncode /Helvetica-Oblique /Helvetica-Oblique accvec ReEncode /Helvetica-Bold /Helvetica-Bold accvec ReEncode /Helvetica-BoldOblique /Helvetica-BoldOblique accvec ReEncode /Courier /Courier accvec ReEncode /Courier-Oblique /Courier-Oblique accvec ReEncode /Courier-Bold /Courier-Bold accvec ReEncode /Courier-BoldOblique /Courier-BoldOblique accvec ReEncode /oshow {gsave [] 0 sd true charpath stroke gr} def /stwn { /fs exch def /fn exch def /text exch def fn findfont fs sf text sw pop xs add /xs exch def} def /stwb { /fs exch def /fn exch def /nbas exch def /textf exch def textf length /tlen exch def nbas tlen gt {/nbas tlen def} if fn findfont fs sf textf dup length nbas sub nbas getinterval sw pop neg xs add /xs exch def} def /accspe [ 65 /plusminus 66 /bar 67 /existential 68 /universal 69 /exclam 70 /numbersign 71 /greater 72 /question 73 /integral 74 /colon 75 /semicolon 76 /less 77 /bracketleft 78 /bracketright 79 /greaterequal 80 /braceleft 81 /braceright 82 /radical 83 /spade 84 /heart 85 /diamond 86 /club 87 /lessequal 88 /multiply 89 /percent 90 /infinity 48 /circlemultiply 49 /circleplus 50 /emptyset 51 /lozenge 52 /bullet 53 /arrowright 54 /arrowup 55 /arrowleft 56 /arrowdown 57 /arrowboth 48 /degree 44 /comma 43 /plus 45 /angle 42 /angleleft 47 /divide 61 /notequal 40 /equivalence 41 /second 97 /approxequal 98 /congruent 99 /perpendicular 100 /partialdiff 101 /florin 102 /intersection 103 /union 104 /propersuperset 105 /reflexsuperset 106 /notsubset 107 /propersubset 108 /reflexsubset 109 /element 110 /notelement 111 /gradient 112 /logicaland 113 /logicalor 114 /arrowdblboth 115 /arrowdblleft 116 /arrowdblup 117 /arrowdblright 118 /arrowdbldown 119 /ampersand 120 /omega1 121 /similar 122 /aleph ] def /Symbol /Special accspe ReEncode gsave .25 .25 scale gsave 0 0 t black [] 0 sd 1 lw 1587 1055 454 340 bl 1587 1055 454 340 C NC 454 340 m 1055 Y s 488 340 m -34 X s 471 381 m -17 X s 471 421 m -17 X s 471 462 m -17 X s 488 502 m -34 X s 471 543 m -17 X s 471 584 m -17 X s 471 624 m -17 X s 488 665 m -34 X s 471 705 m -17 X s 471 746 m -17 X s 471 786 m -17 X s 488 827 m -34 X s 471 868 m -17 X s 471 908 m -17 X s 471 949 m -17 X s 488 989 m -34 X s 471 1030 m -17 X s 471 1070 m -17 X s 471 1111 m -17 X s 488 1151 m -34 X s 471 1192 m -17 X s 471 1233 m -17 X s 471 1273 m -17 X s 488 1314 m -34 X s 488 1314 m -34 X s 471 1354 m -17 X s /xs 0 def (0) /Times-Roman 68 stwn gsave 408 318 t 0 r xs neg 0 t 0 0 m /Times-Roman findfont 68 sf 0 0 m (0) show gr /xs 0 def (0.2) /Times-Roman 68 stwn gsave 408 480 t 0 r xs neg 0 t 0 0 m /Times-Roman findfont 68 sf 0 0 m (0.2) show gr /xs 0 def (0.4) /Times-Roman 68 stwn gsave 408 642 t 0 r xs neg 0 t 0 0 m /Times-Roman findfont 68 sf 0 0 m (0.4) show gr /xs 0 def (0.6) /Times-Roman 68 stwn gsave 408 804 t 0 r xs neg 0 t 0 0 m /Times-Roman findfont 68 sf 0 0 m (0.6) show gr /xs 0 def (0.8) /Times-Roman 68 stwn gsave 408 967 t 0 r xs neg 0 t 0 0 m /Times-Roman findfont 68 sf 0 0 m (0.8) show gr /xs 0 def (1) /Times-Roman 68 stwn gsave 408 1129 t 0 r xs neg 0 t 0 0 m /Times-Roman findfont 68 sf 0 0 m (1) show gr /xs 0 def (1.2) /Times-Roman 68 stwn gsave 408 1291 t 0 r xs neg 0 t 0 0 m /Times-Roman findfont 68 sf 0 0 m (1.2) show gr 454 340 m 1587 X s 454 374 m -34 Y s 507 357 m -17 Y s 559 357 m -17 Y s 612 357 m -17 Y s 665 374 m -34 Y s 718 357 m -17 Y s 771 357 m -17 Y s 824 357 m -17 Y s 877 374 m -34 Y s 930 357 m -17 Y s 983 357 m -17 Y s 1036 357 m -17 Y s 1089 374 m -34 Y s 1142 357 m -17 Y s 1194 357 m -17 Y s 1247 357 m -17 Y s 1300 374 m -34 Y s 1353 357 m -17 Y s 1406 357 m -17 Y s 1459 357 m -17 Y s 1512 374 m -34 Y s 1565 357 m -17 Y s 1618 357 m -17 Y s 1671 357 m -17 Y s 1724 374 m -34 Y s 1777 357 m -17 Y s 1830 357 m -17 Y s 1882 357 m -17 Y s 1935 374 m -34 Y s 1935 374 m -34 Y s 1988 357 m -17 Y s 2041 357 m -17 Y s /xs 0 def (0) /Times-Roman 68 stwn gsave 454 272 t 0 r xs 2 div neg 0 t 0 0 m /Times-Roman findfont 68 sf 0 0 m (0) show gr /xs 0 def (0.2) /Times-Roman 68 stwn gsave 665 272 t 0 r xs 2 div neg 0 t 0 0 m /Times-Roman findfont 68 sf 0 0 m (0.2) show gr /xs 0 def (0.4) /Times-Roman 68 stwn gsave 877 272 t 0 r xs 2 div neg 0 t 0 0 m /Times-Roman findfont 68 sf 0 0 m (0.4) show gr /xs 0 def (0.6) /Times-Roman 68 stwn gsave 1089 272 t 0 r xs 2 div neg 0 t 0 0 m /Times-Roman findfont 68 sf 0 0 m (0.6) show gr /xs 0 def (0.8) /Times-Roman 68 stwn gsave 1300 272 t 0 r xs 2 div neg 0 t 0 0 m /Times-Roman findfont 68 sf 0 0 m (0.8) show gr /xs 0 def (1) /Times-Roman 68 stwn gsave 1512 272 t 0 r xs 2 div neg 0 t 0 0 m /Times-Roman findfont 68 sf 0 0 m (1) show gr /xs 0 def (1.2) /Times-Roman 68 stwn gsave 1724 272 t 0 r xs 2 div neg 0 t 0 0 m /Times-Roman findfont 68 sf 0 0 m (1.2) show gr /xs 0 def (1.4) /Times-Roman 68 stwn gsave 1935 272 t 0 r xs 2 div neg 0 t 0 0 m /Times-Roman findfont 68 sf 0 0 m (1.4) show gr 1587 1055 454 340 C 2268 1622 0 0 C /xs 0 def (q/2k) /Times-Roman 86 stwn (F) /Times-Roman 60 stwn gsave 2041 161 t 0 r xs neg 0 t 0 0 m /Times-Roman findfont 86 sf 0 0 m (q/2k) show currentpoint pop 0 t /Times-Roman findfont 60 sf 0 -29 m (F) show gr 1587 1055 454 340 C 3 lw 454 1250 m 1587 X s 2268 2268 0 -323 C 454 1250 m 10 X s 464 1250 m 11 X s 475 1250 m 10 X s 485 1250 m 11 X s 496 1250 m 11 X s 507 1250 m 10 X s 517 1250 m 5 X s 590 1250 m 1 X s 591 1250 m 11 X s 602 1250 m 10 X s 612 1250 m 11 X s 623 1250 m 11 X s 634 1250 m 10 X s 644 1250 m 11 X s 655 1250 m 3 X s 726 1250 m 3 X s 729 1250 m 10 X s 739 1250 m 11 X s 750 1250 m 11 X s 761 1250 m 10 X s 771 1250 m 11 X s 782 1250 m 10 X s 792 1250 m 2 X s 862 1250 m 4 X s 866 1250 m 11 X s 877 1250 m 11 X s 888 1250 m 10 X s 898 1250 m 11 X s 909 1250 m 10 X s 919 1250 m 11 X s 998 1250 m 6 X s 1004 1250 m 11 X s 1015 1250 m 10 X s 1025 1250 m 11 X s 1036 1250 m 10 X s 1046 1250 m 11 X s 1057 1250 m 9 X s 1134 1250 m 8 X s 1142 1250 m 10 X s 1152 1250 m 11 X s 1163 1250 m 10 X s 1173 1250 m 11 X s 1184 1250 m 10 X s 1194 1250 m 8 X s 1270 1249 m 9 X s 1279 1249 m 11 -1 d s 1290 1248 m 10 X s 1300 1248 m 11 -1 d s 1311 1247 m 10 X s 1321 1247 m 11 -1 d s 1332 1246 m 6 -1 d s 1405 1236 m 1 -1 d s 1406 1235 m 11 -2 d s 1417 1233 m 10 -3 d s 1427 1230 m 11 -4 d s 1438 1226 m 10 -3 d s 1448 1223 m 11 -5 d s 1459 1218 m 11 -4 d s 1528 1179 m 5 -3 d s 1533 1176 m 11 -8 d s 1544 1168 m 10 -8 d s 1554 1160 m 11 -8 d s 1565 1152 m 11 -8 d s 1576 1144 m 6 -6 d s 1634 1094 m 5 -4 d s 1639 1090 m 11 -9 d s 1650 1081 m 10 -9 d s 1660 1072 m 11 -8 d s 1671 1064 m 10 -9 d s 1681 1055 m 5 -4 d s 1740 1008 m 5 -3 d s 1745 1005 m 10 -8 d s 1755 997 m 11 -8 d s 1766 989 m 11 -8 d s 1777 981 m 10 -7 d s 1787 974 m 8 -5 d s 1852 932 m 9 -6 d s 1861 926 m 11 -6 d s 1872 920 m 10 -6 d s 1882 914 m 11 -6 d s 1893 908 m 11 -6 d s 1904 902 m 7 -4 d s 1972 867 m 6 -3 d s 1978 864 m 10 -5 d s 1988 859 m 11 -5 d s 1999 854 m 10 -5 d s 2009 849 m 11 -5 d s 2020 844 m 11 -4 d s 2031 840 m 3 -2 d s 1587 1055 454 340 C 2268 2268 0 -323 C 454 1250 m 10 X s 464 1250 m 11 X s 475 1250 m 1 X s 499 1250 m 8 -1 d s 507 1249 m 10 X s 517 1249 m 5 X s 544 1248 m 5 -1 d s 549 1247 m 10 X s 559 1247 m 8 -1 d s 589 1244 m 2 X s 591 1244 m 11 -1 d s 602 1243 m 10 -1 d s 635 1239 m 9 -1 d s 644 1238 m 11 -1 d s 655 1237 m 2 -1 d s 680 1233 m 6 -1 d s 686 1232 m 11 -2 d s 697 1230 m 5 X s 724 1226 m 5 -1 d s 729 1225 m 10 -2 d s 739 1223 m 8 -2 d s 769 1217 m 2 -1 d s 771 1216 m 11 -2 d s 782 1214 m 9 -2 d s 813 1207 m s 813 1207 m 11 -3 d s 824 1204 m 11 -2 d s 835 1202 m -1 Y s 857 1196 m 9 -3 d s 866 1193 m 11 -3 d s 877 1190 m 2 X s 901 1183 m 8 -2 d s 909 1181 m 10 -4 d s 919 1177 m 3 X s 944 1170 m 7 -3 d s 951 1167 m 11 -3 d s 962 1164 m 3 -2 d s 987 1155 m 6 -2 d s 993 1153 m 11 -4 d s 1004 1149 m 4 -2 d s 1029 1139 m 7 -2 d s 1036 1137 m 10 -5 d s 1046 1132 m 4 -1 d s 1071 1122 m 7 -3 d s 1078 1119 m 11 -4 d s 1089 1115 m 3 -2 d s 1113 1104 m 7 -3 d s 1120 1101 m 11 -5 d s 1131 1096 m 3 -1 d s 1154 1085 m 9 -4 d s 1163 1081 m 10 -5 d s 1173 1076 m 2 X s 1195 1066 m 10 -5 d s 1205 1061 m 10 -6 d s 1235 1045 m 2 -1 d s 1237 1044 m 10 -5 d s 1247 1039 m 9 -5 d s 1275 1024 m 4 -3 d s 1279 1021 m 11 -5 d s 1290 1016 m 5 -4 d s 1315 1001 m 6 -4 d s 1321 997 m 11 -6 d s 1332 991 m 2 -1 d s 1354 978 m 10 -6 d s 1364 972 m 9 -6 d s 1393 954 m 3 -2 d s 1396 952 m 10 -6 d s 1406 946 m 6 -4 d s 1431 930 m 7 -5 d s 1438 925 m 10 -7 d s 1448 918 m 2 -1 d s 1468 904 m 2 X s 1470 904 m 10 -8 d s 1480 896 m 7 -4 d s 1506 879 m 6 -5 d s 1512 874 m 11 -7 d s 1523 867 m 1 -2 d s 1542 852 m 2 -1 d s 1544 851 m 10 -8 d s 1554 843 m 7 -4 d s 1579 825 m 7 -5 d s 1586 820 m 11 -8 d s 1597 812 m -1 Y s 1615 797 m 3 -2 d s 1618 795 m 10 -8 d s 1628 787 m 5 -4 d s 1650 769 m 10 -8 d s 1660 761 m 8 -6 d s 1686 741 m 6 -6 d s 1692 735 m 11 -8 d s 1703 727 m -1 Y s 1720 711 m 4 -2 d s 1724 709 m 10 -9 d s 1734 700 m 4 -3 d s 1755 682 m -1 Y s 1755 681 m 11 -9 d s 1766 672 m 6 -5 d s 1789 652 m 9 -8 d s 1798 644 m 8 -7 d s 1822 621 m 8 -6 d s 1830 615 m 9 -9 d s 1855 590 m 6 -5 d s 1861 585 m 11 -10 d s 1872 575 m s 1888 559 m 5 -4 d s 1893 555 m 11 -11 d s 1904 544 m 1 -1 d s 1921 527 m 4 -3 d s 1925 524 m 10 -11 d s 1935 513 m 2 -1 d s 1953 495 m 4 -3 d s 1957 492 m 10 -11 d s 1967 481 m 2 -2 d s 1985 463 m 3 -4 d s 1988 459 m 11 -10 d s 1999 449 m 1 -2 d s 2016 430 m 4 -4 d s 2020 426 m 11 -11 d s 2031 415 m 1 -1 d s 1587 1055 454 340 C 2268 1622 0 0 C 1587 1055 454 340 C 2268 1622 0 0 C gsave 1703 1087 t 0 r 0 0 m /Times-Roman findfont 86 sf 0 0 m (exact) show gr 1587 1055 454 340 C 2268 1622 0 0 C 1587 1055 454 340 C 2268 1622 0 0 C gsave 1194 1273 t 0 r 0 0 m /Times-Roman findfont 86 sf 0 0 m (LSD, PBE GGA) show gr 1587 1055 454 340 C 2268 1622 0 0 C 1587 1055 454 340 C 2268 1622 0 0 C gsave 1406 665 t 0 r 0 0 m /Times-Roman findfont 86 sf 0 0 m (PW91) show gr 1587 1055 454 340 C 2268 1622 0 0 C 1587 1055 454 340 C 2268 1622 0 0 C gsave 1406 600 t 0 r 0 0 m /Times-Roman findfont 86 sf 0 0 m (GGA) show gr 1587 1055 454 340 C 2268 1622 0 0 C 1587 1055 454 340 C 2268 1622 0 0 C gsave 612 843 t 0 r 0 0 m /Symbol findfont 86 sf 0 0 m (g) show currentpoint pop 0 t /Times-Roman findfont 60 sf 0 -29 m (xc) show currentpoint pop 0 t /Times-Roman findfont 86 sf 0 0 m (\(r) show currentpoint pop 0 t /Times-Roman findfont 60 sf 0 -29 m (s) show currentpoint pop 0 t /Times-Roman findfont 86 sf 0 0 m (=4,q/2k) show currentpoint pop 0 t /Times-Roman findfont 60 sf 0 -29 m (F) show currentpoint pop 0 t /Times-Roman findfont 86 sf 0 0 m (\)) show gr 1587 1055 454 340 C gr gr showpage end %%EndDocument endTexFig -73 3687 a Fr(FIG.)29 b(3.)50 b(The)35 b(linear)g(resp)r(onse)h (function)f(of)g(Eq.)g(\(24\))g(for)h(the)-150 3779 y(uniform)23 b(electron)h(gas)g(\()p Fq(r)619 3787 y Ff(s)673 3779 y Fr(=)d(4)p Fq(;)13 b(\020)27 b Fr(=)21 b(0\),)j(ev)l(aluated)f(in)g (LSD)g(and)f(in)-150 3870 y(t)n(w)n(o)k(di\013eren)n(t)f(GGA's,)h(and)f (the)g(nearly-exact)g(result)h(of)g(Ref.)g([39].)-150 3961 y(The)31 b(curv)n(es)f(for)i Fq(r)411 3969 y Ff(s)473 3961 y Fr(=)d(2)i(or)g(5)g(are)g(similar.)50 b(The)31 b(PW91)h(curv)n(e)e(is)-150 4053 y(also)25 b(that)e(for)i(the)e (second-order)h(gradien)n(t)g(expansion)f(appro)n(xima-)-150 4144 y(tion)e(\(GEA\))g(for)h(the)e(exc)n(hange-correlation)j(energy)-6 b(,)21 b(whic)n(h)g(should)-150 4235 y(yield)26 b(the)f(exact)h(linear) g(resp)r(onse)h(for)f Fq(q)e(<<)d Fr(2)p Fq(k)1289 4243 y Ff(F)1340 4235 y Fr(.)-67 4435 y Ft(Finally)-7 b(,)37 b(b)r(ecause)e Fh(h)p Fn(n)638 4447 y Fp(X)o(C)722 4435 y Ft(\()p Fn(u)p Ft(\))p Fh(i)h Ft(cannot)e(b)r(e)i(m)n(uc)n(h)f(deep)r (er)h(on)-150 4534 y(the)28 b(scale)f(of)g Fh(h)p Fn(n)p Fh(i)h Ft(than)g(it)g(is)g(in)g(the)g(lo)n(w-densit)n(y)e(uniform)i (gas)-150 4634 y(\(Lieb-Oxford)18 b(b)r(ound)h([7,19,46]\),)g(the)h (gradien)n(t)e(expansion)g(for)-150 4733 y(the)i(exc)n(hange)e(energy)h (\(i.e.,)i(the)f(form)n(ula)f(for)g Fn(F)1376 4745 y Fp(X)1441 4733 y Ft(sho)n(wn)g(ab)r(o)n(v)n(e)-150 4833 y(Eq.)24 b(\(28\)\))h(m)n(ust)g(also)f(b)r(e)h(generalized.)34 b(The)25 b(PBE)f(generaliza-)-150 4933 y(tion)k(is)111 5115 y Fn(F)164 5127 y Fp(X)210 5115 y Ft(\()p Fn(\020)i Ft(=)22 b(0)p Fn(;)14 b(s)p Ft(\))23 b(=)f(1)c(+)g Fn(\024)h Fh(\000)f Fn(\024=)p Ft(\(1)f(+)h Fn(\026s)1301 5080 y Fj(2)1339 5115 y Fn(=\024)p Ft(\))p Fn(;)261 b Ft(\(31\))-150 5297 y(whic)n(h)22 b(tends)g(to)g(1)7 b(+)g Fn(\024)20 b Ft(as)h Fn(s)i Fh(!)g(1)p Ft(.)35 b(The)22 b(parameter)f Fn(\024)i Ft(=)f(0)p Fn(:)p Ft(804)-150 5396 y(is)31 b(the)g(largest)e(v)-5 b(alue)31 b(consisten)n(t)f(with)h Fn(F)1206 5408 y Fp(X)o(C)1290 5396 y Ft(\()p Fn(r)1359 5408 y Fl(s)1395 5396 y Fn(;)14 b(\020)6 b(;)14 b(s)p Ft(\))28 b Fh(\024)g Ft(2)p Fn(:)p Ft(273)2042 -83 y(for)d(all)h Fn(r)2318 -71 y Fl(s)2354 -83 y Ft(,)g Fn(\020)32 b Ft(and)26 b Fn(s)p Ft(,)g(a)g(condition)f(whic)n(h)h(ensures)f(satisfaction)2042 17 y(of)41 b(the)g(Lieb-Oxford)f(b)r(ound)h(on)g(the)g(exc)n (hange-correlation)2042 116 y(energy)25 b(for)g(all)h(densities.)36 b(The)26 b(LSD)h Fn(F)3324 128 y Fp(X)o(C)3408 116 y Ft(\()p Fn(r)3477 128 y Fl(s)3513 116 y Fn(;)14 b(\020)6 b(;)14 b Ft(0\))26 b(automati-)2042 216 y(cally)j(satis\014es)f(this)i (b)r(ound.)43 b(Note)30 b(that)f(this)h(is)f Fb(not)h Ft(a)f(b)r(ound)2042 315 y(on)34 b(the)g(exc)n(hange-correlation)d Fb(ener)l(gy)36 b(density)p Ft(.)57 b(Because)33 b(of)2042 415 y(an)27 b(in)n(tegration)g(b)n(y)g(parts,)g(GGA)h(is)g(not)g(exp)r (ected)g(to)f(predict)2042 515 y(the)h(energy)e(densit)n(y)i(correctly) e([47,48].)2125 614 y(The)36 b(conjoin)n(tness)e([32])h(of)h Fn(T)3095 626 y Fp(S)3165 614 y Ft(and)g Fh(j)p Fn(E)3419 626 y Fp(X)3464 614 y Fh(j)g Ft(is)f(most)h(quan)n(ti-)2042 714 y(tativ)n(ely)d(eviden)n(t)g(in)g(the)h(limit)g Fn(s)f Fh(!)f Ft(0,)j(where)d(Eq.)h(\(31\))g(b)r(e-)2042 814 y(comes)24 b(1)12 b(+)g(0)p Fn(:)p Ft(21951)p Fn(s)2729 783 y Fj(2)2787 814 y Ft(and)24 b Fn(G)p Ft(\()p Fn(\020)30 b Ft(=)23 b(0)p Fn(;)14 b(s)p Ft(\))24 b(of)g(Eq.)g(\(15\))h(b)r (ecomes)2042 913 y(1)18 b(+)g(0)p Fn(:)p Ft(18519)p Fn(s)2499 883 y Fj(2)2533 913 y Ft(.)2125 1013 y(Gradien)n(t)24 b(corrections)f(to)i(LSD)g(capture)g(m)n(uc)n(h)f(of)h(the)h(non-)2042 1112 y(lo)r(calit)n(y)47 b(of)g Fn(E)2530 1124 y Fp(X)o(C)2614 1112 y Ft([)p Fn(n)2687 1124 y Fm(")2725 1112 y Fn(;)14 b(n)2812 1124 y Fm(#)2850 1112 y Ft(].)97 b(The)47 b(residual)g(nonlo)r (calit)n(y)g(can)2042 1212 y(manifest)f(as)e(a)i(di\013use)g(large-)p Fn(u)d Ft(comp)r(onen)n(t)i(of)h(the)g(exact)2042 1312 y(exc)n(hange-correlation)24 b(hole)j(whic)n(h)h(has)g(no)f(univ)n (ersal)g(dep)r(en-)2042 1411 y(dence)40 b(up)r(on)h Fn(n)2558 1423 y Fm(")2596 1411 y Ft(\()p Fi(r)p Ft(\),)j Fn(n)2816 1423 y Fm(#)2854 1411 y Ft(\()p Fi(r)p Ft(\),)h Fh(r)p Fn(n)3144 1423 y Fm(")3182 1411 y Ft(\()p Fi(r)p Ft(\),)f(and)c Fh(r)p Fn(n)3645 1423 y Fm(#)3684 1411 y Ft(\()p Fi(r)p Ft(\),)k(and)c(is)2042 1511 y(signi\014can)n(t)e(in)h(the)g(metal)g (surface)f(energy)g([43])g(and)h(in)g(the)2042 1611 y(v)-5 b(alence-electron)36 b(energy)g(of)i(a)f(m)n(ultiply-b)r(onded)g (molecule,)2042 1710 y(as)k(discussed)h(in)g(Section)g(I)r(I)r(I)h(and) f(Ref.)g([49].)80 b(Under)42 b(this)2042 1810 y(manifestation)35 b(\(whic)n(h)h(is)g(inauspicious)f(for)g(b)r(oth)h(LSD)g(and)2042 1910 y(GGA\),)30 b(and)f(b)r(ecause)g(of)g(the)g(appro)n(ximate)f (cancellation)g(b)r(e-)2042 2009 y(t)n(w)n(een)h(the)g(nonlo)r (calities)g(of)g Fn(E)3065 1979 y Fl(GGA)3060 2030 y Fp(X)3251 2009 y Ft(and)g Fn(E)3480 1979 y Fl(GGA)3475 2030 y Fp(C)3667 2009 y Ft(for)g(v)-5 b(alence-)2042 2109 y(electron)29 b(densities,)h(it)g(can)f(happ)r(en)h(that)g Fn(E)3503 2079 y Fl(LS)s(D)3498 2129 y Fp(X)o(C)3683 2109 y Ft(is)f(more)g(ac-)2042 2208 y(curate)i(than)h Fn(E)2564 2178 y Fl(GGA)2559 2229 y Fp(X)o(C)2722 2208 y Ft(.)50 b(When)32 b(an)g(electron)f(is)h(shared)f(b)n(y)h(t)n(w)n(o) 2042 2308 y(or)d(more)h(isolated)g(subsystems)g([50{)o(52],)g(the)h (di\013use)g(comp)r(o-)2042 2408 y(nen)n(t)h(can)f(ha)n(v)n(e)g (in\014nite)h(range.)48 b(This)32 b(di\013use)g(comp)r(onen)n(t)f(is) 2042 2507 y(missed)g(b)n(y)f(PW91)g(\(due)i(to)f(the)g(sharpness)f(of)h (its)g(real-space)2042 2607 y(cuto\013s\),)26 b(and)f(also)g(b)n(y)g (PBE)f(\(whic)n(h)i(assumes)e(that)i(the)f(Lieb-)2042 2707 y(Oxford)20 b(b)r(ound)i(is)g(close)e(in)i(the)g(lo)n(w-densit)n (y)e(limit\),)k(but)e(could)2042 2806 y(b)r(e)i(em)n(ulated)f(b)n(y)g (reduction)g(of)h(the)f(parameter)f Fn(\024)i Ft(in)g(Eq.)e(\(31\).) 2125 2906 y(There)42 b(is)g(another)f(w)n(a)n(y)h(in)g(whic)n(h)g(LSD)h (and)g(GGA)g(can)2042 3005 y(fail:)36 b(When)26 b(the)g(Kohn-Sham)f (non-in)n(teracting)f(ground-state)2042 3105 y(w)n(a)n(v)n(efunction)e (is)h(not)g(a)g(single)g(Slater)f(determinan)n(t)i(but)f(a)g(lin-)2042 3205 y(ear)g(com)n(bination)h(of)g(sev)n(eral)e(degenerate)h(ones,)i (the)g(LSD)f(and)2042 3304 y(GGA)d(exc)n(hange-correlation)c(holes)j (can)h(fail)g(ev)n(en)f(close)g(to)h(the)2042 3404 y(electron)h(\()p Fn(u)g Fh(!)i Ft(0\),)f(a)f(situation)g(whic)n(h)h(is)f(sometimes)g (recti\014ed)2042 3504 y(b)n(y)i(symmetry)h(breaking)e([53].)35 b(Near-degeneracies)22 b(whic)n(h)j(are)2042 3603 y(v)n(ery)g (di\013eren)n(t)h(from)f(those)h(in)g(the)h(uniform)f(electron)f(gas)g (can)2042 3703 y(also)h(cause)h(this)h(problem)f([54].)2281 3983 y Fo(I)r(I.)59 b(CHEMICAL)30 b(CONSEQUENCES)g(OF)2728 4074 y(NONLOCALITY)2125 4292 y Ft(W)-7 b(e)31 b(pass)e(no)n(w)h(to)g (the)h(consequences)e(of)h(nonlo)r(calit)n(y)-7 b(.)44 b(The)2042 4392 y(near)33 b(lo)r(calit)n(y)h(of)g Fn(E)2695 4404 y Fp(X)o(C)2778 4392 y Ft([)p Fn(n)2851 4404 y Fm(")2889 4392 y Fn(;)14 b(n)2976 4404 y Fm(#)3014 4392 y Ft(])35 b(for)e Fn(s)3278 4371 y(<)3278 4417 y Fh(\030)3377 4392 y Ft(1)h(and)g(2)3697 4371 y Fn(<)3697 4417 y Fh(\030)3795 4392 y Fn(r)3832 4404 y Fl(s)3902 4371 y Fn(<)3902 4417 y Fh(\030)4001 4392 y Ft(10)2042 4491 y(partly)28 b(explains)h(the)g (remark)-5 b(able)28 b(success)g(of)i(LSD)f(for)g(man)n(y)2042 4591 y(solid)37 b(state)h(applications)f(\(and)i(its)f(less)f (impressiv)n(e)g(p)r(erfor-)2042 4691 y(mance)28 b(for)g(molecules)g (and)h(atoms,)f(where)g(there)g(are)g(regions)2042 4790 y(with)38 b Fn(s)i(>>)f Ft(1\).)68 b(Because)37 b(of)g(the)i(strong)d (cancellation)h(b)r(e-)2042 4890 y(t)n(w)n(een)22 b(the)i(GGA)f(nonlo)r (calities)f(of)h(exc)n(hange)f(and)g(correlation)2042 4990 y(in)f(solid-state)e(applications,)j(the)f(residue)f(of)g(this)h (cancellation)2042 5089 y(is)28 b(not)f(uniformly)h(b)r(etter)g(than)g (LSD.)h(The)f(spin)g(p)r(olarization)2042 5189 y(energy)i(of)i(Fig.)f (2)g(is)h(also)e(rather)g(lo)r(cal,)i(i.e.,)h(only)e(w)n(eakly)g Fn(s)p Ft(-)2042 5288 y(dep)r(enden)n(t)k(for)f Fn(s)2658 5267 y(<)2658 5313 y Fh(\030)2758 5288 y Ft(1)g(\(and)h(for)f Fn(s)3243 5267 y(<)3243 5313 y Fh(\030)3342 5288 y Ft(3)h(at)f(high)h (densities\),)2042 5388 y(explaining)40 b(the)h(success)e(of)i(LSD)g (for)f(magnetism.)75 b(Where)1946 5645 y(6)p eop %%Page: 7 7 7 6 bop -150 -83 a Ft(the)31 b(gradien)n(t)e(corrections)g(ha)n(v)n(e)g (an)i(imp)r(ortan)n(t)f(in\015uence)h(on)-150 17 y(magnetism)f(\(e.g.,) h(in)g(solid)f(F)-7 b(e)31 b([55]\),)g(it)g(is)f(often)h(an)f(indirect) -150 116 y(in\015uence)e(via)f(the)h(crystal)e(structure)i(or)e (lattice)i(constan)n(t.)-67 216 y(There)21 b(are)g(few)g(ph)n(ysical)g (consequences)f(of)i(the)g(correlation-)-150 315 y(lik)n(e)33 b(nonlo)r(calit)n(y)f(of)h Fn(F)593 327 y Fp(X)o(C)677 315 y Ft(,)i(whic)n(h)e(is)g(seen)g(in)g(Fig.)g(1)g(only)g(for)-150 415 y Fn(r)-113 427 y Fl(s)-39 394 y Fn(>)-39 440 y Fh(\030)63 415 y Ft(10.)63 b(One)36 b(theoretical)f(consequence)h(is)g(that)h (gradien)n(t)-150 515 y(corrections)g(should)i(opp)r(ose)f(the)h(c)n (harge-densit)n(y-w)n(a)n(v)n(e)c(and)-150 614 y(Wigner-crystal)41 b(instabilities)i(of)g(the)h(lo)n(w-densit)n(y)d(uniform)-150 714 y(electron)27 b(gas.)-67 814 y(Chemical)k(consequences)f(of)i(the)f (exc)n(hange-lik)n(e)f(nonlo)r(cal-)-150 913 y(it)n(y)i(of)h Fn(F)132 925 y Fp(X)o(C)248 913 y Ft(for)f Fn(r)417 925 y Fl(s)484 892 y Fn(<)484 938 y Fh(\030)580 913 y Ft(10)g(ha)n(v)n(e)f (b)r(een)i(discussed)f(in)h(Ref.)g([21].)-150 1013 y(Gradien)n(t)e (corrections)e(to)i(LSD)h(lo)n(w)n(er)d(atomization)i(energies)-150 1112 y([10])37 b(of)i(molecules)e(and)i(solids,)h(fa)n(v)n(or)c(op)r (en)j(structures)e(rel-)-150 1212 y(ativ)n(e)d(to)h(close-pac)n(k)n(ed) d(ones)i([56{)o(59],)h(raise)f(barriers)e(to)j(the)-150 1312 y(formation)22 b(of)h(highly-b)r(onded)f(transition-state)g (complexes)g(in)-150 1411 y(c)n(hemical)33 b(reactions)g([60],)h(and)g (usually)f(stretc)n(h)g(equilibrium)-150 1511 y(b)r(ond)c(lengths.)40 b(As)29 b(a)f(n)n(umerical)g(example,)g(consider)g(the)h(h)n(y-)-150 1611 y(drogen)j(abstraction)f(reaction)h(H)h(+)f(H)1145 1623 y Fj(2)1214 1611 y Fh(!)h Ft(H)1392 1623 y Fj(3)1461 1611 y Fh(!)g Ft(H)1639 1623 y Fj(2)1710 1611 y Ft(+)f(H.)-150 1710 y(The)h(transition)g(state)g(H)682 1722 y Fj(3)753 1710 y Ft(has)g(more)f(b)r(onds)i(than)f(the)h(reac-)-150 1810 y(tan)n(ts.)h(The)22 b(barrier)f(heigh)n(ts)h(are)f(0.8)h(eV)g(at) h(the)f(Hartree-F)-7 b(o)r(c)n(k)-150 1910 y(lev)n(el,)35 b(-0.11)e(eV)h(in)g(LSD,)h(0.15)e(eV)h(in)g(the)h(PBE)e(GGA,)i(and)-150 2009 y(0.42)h(eV)h(exp)r(erimen)n(tally)-7 b(,)38 b(as)f(discussed)f (in)h(Ref.)g([21].)64 b(The)-150 2109 y(negativ)n(e)23 b(LSD)h(barrier)f(heigh)n(t)g(means)h(that)g(H)1365 2121 y Fj(3)1427 2109 y Ft(is)g(incorrectly)-150 2208 y(predicted)39 b(to)g(b)r(e)g(stable)f(b)n(y)h(LSD.)g(The)g(GGA)h(v)-5 b(alue)38 b(giv)n(en)-150 2308 y(ab)r(o)n(v)n(e)c(is)h(found)g(with)h (the)f(exact)g(spin)g(scaling)f(of)h(Eq.)g(\(11\);)-150 2408 y(the)29 b(appro)n(ximate)f(spin)h(scaling)f(of)h(Eq.)f(\(12\))h (has)f(little)i(e\013ect)-150 2507 y(\(yielding)e(a)f(barrier)f(of)h (0.21)f(eV\).)-67 2607 y(T)-7 b(o)30 b(understand)h(these)f(e\013ects,) i(w)n(e)e([21])g(ha)n(v)n(e)g(de\014ned)h(and)-150 2707 y(studied)d(distributions)g(and)g(energy-w)n(eigh)n(ted)e(a)n(v)n (erages)f Fh(h)p Fn(r)1801 2719 y Fl(s)1837 2707 y Fh(i)p Ft(,)-150 2806 y Fh(hj)p Fn(\020)6 b Fh(ji)p Ft(,)47 b(and)41 b Fh(h)p Fn(s)p Fh(i)i Ft(of)f(the)g(electron)f(densit)n(y)h (parameters,)i(and)-150 2906 y(found)g(that:)69 b(\(1\))44 b Fh(h)p Fn(r)562 2918 y Fl(s)598 2906 y Fh(i)g Ft(and)g Fh(h)p Fn(s)p Fh(i)g Ft(are)f(larger)e(for)i(the)h(sepa-)-150 3005 y(rated)36 b(atoms)h(than)g(for)f(the)i(molecule)e(or)h(solid,)h (and)f(larger)-150 3105 y(for)f(the)g(separated)f(reactan)n(ts)f(than)j (for)e(the)i(highly-b)r(onded)-150 3205 y(transition-state)27 b(complex.)39 b(\(2\))29 b Fh(h)p Fn(r)997 3217 y Fl(s)1033 3205 y Fh(i)g Ft(and)f Fh(h)p Fn(s)p Fh(i)h Ft(increase)e(when)-150 3304 y(w)n(e)i(stretc)n(h)g(a)h(b)r(ond)f(or)g(lattice)h(constan)n(t.) 42 b(\(3\))30 b(Gradien)n(t)f(cor-)-150 3404 y(rections)k(fa)n(v)n(or)g (b)r(oth)h(densit)n(y)g(inhomogeneit)n(y)f(\(greater)g Fh(h)p Fn(s)p Fh(i)p Ft(\))-150 3504 y(and)44 b(densit)n(y)h(con)n (traction)e(\(smaller)h Fh(h)p Fn(r)1190 3516 y Fl(s)1226 3504 y Fh(i)p Ft(\),)49 b(driving)44 b(an)g(in-)-150 3603 y(\014nitesimal)30 b(pro)r(cess)f(forw)n(ard)g(if)i(a)f(certain)f (inequalit)n(y)h(is)g(sat-)-150 3703 y(is\014ed:)343 3835 y Fn(d)p Fh(h)p Fn(s)p Fh(i)p 343 3872 147 4 v 364 3948 a(h)p Fn(s)p Fh(i)522 3891 y(\025)23 b Fn(P)685 3835 y(d)p Fh(h)p Fn(r)797 3847 y Fl(s)833 3835 y Fh(i)p 685 3872 181 4 v 686 3948 a Ft(2)p Fh(h)p Fn(r)797 3960 y Fl(s)832 3948 y Fh(i)894 3891 y Ft(+)18 b Fn(Qd)p Fh(hj)p Fn(\020)6 b Fh(ji)q Fn(;)483 b Ft(\(32\))-150 4101 y(where)28 b Fn(P)37 b Fh(\031)24 b Ft(1)k(and)h Fn(Q)24 b Fh(\031)h Ft(0.)40 b(In)28 b(t)n(ypical)h(pro)r(cesses,)e Fn(d)p Fh(h)p Fn(r)1661 4113 y Fl(s)1698 4101 y Fh(i)i Ft(and)-150 4201 y Fn(d)p Fh(h)p Fn(s)p Fh(i)23 b Ft(ha)n(v)n(e)d(the)j(same)e (sign)g(and)h(so)f(comp)r(ete)i(-)e(a)h(second)f(reason)-150 4301 y(wh)n(y)32 b(LSD)i(w)n(orks)d(as)h(w)n(ell)g(as)g(it)i(do)r(es.) 52 b(In)33 b(some)f(cases)f(\(e.g.,)-150 4400 y(H)-88 4412 y Fj(2)-50 4400 y Ft(\))37 b(gradien)n(t)f(corrections)f(actually) h(shorten)g(b)r(ond)i(lengths)-150 4500 y(and)g(reduce)f Fh(h)p Fn(s)p Fh(i)p Ft(,)42 b(when)c(b)n(y)g(doing)f(so)g(they)i(can)e (pro)r(duce)h(a)-150 4599 y(su\016cien)n(t)28 b(decrease)e(of)h Fh(h)p Fn(r)690 4611 y Fl(s)727 4599 y Fh(i)p Ft(.)-67 4699 y(It)h(is)g(principally)f(the)h Fb(sign)g Ft(of)f(the)h(gradien)n (t)f(corrections)f(to)-150 4799 y Fn(E)-89 4811 y Fp(X)o(C)24 4799 y Ft(whic)n(h)j(determines)f(whether)h(they)h(will)f(driv)n(e)f(a) h(pro)r(cess)-150 4898 y(forw)n(ard.)40 b(F)-7 b(or)29 b(example,)g(a)g(h)n(yp)r(othetical)g Fn(F)1296 4910 y Fp(X)o(C)1406 4898 y Ft(=)c(1)19 b(+)g Fn(\027)5 b(s)1726 4868 y Fj(2)1793 4898 y Ft(for)-150 4998 y(an)n(y)31 b(p)r(ositiv)n(e)g Fn(\027)36 b Ft(implies)c(Eq.)f(\(32\))g(with)h Fn(P)41 b Ft(=)29 b(1)i(and)h Fn(Q)d Ft(=)g(0.)-150 5098 y(Ho)n(w)n(ev)n(er,)41 b(it)f(is)f(the)h Fb(size)g Ft(of)g(these)g (corrections)d(\(or)i(in)h(this)-150 5197 y(example)f(the)g(size)g(of)g Fn(\027)5 b Ft(\))39 b(whic)n(h)g(determines)g(ho)n(w)g(strongly)-150 5297 y(the)f(pro)r(cess)e(will)i(b)r(e)g(fa)n(v)n(ored.)64 b(The)38 b(strong)e(nonlo)r(calit)n(y)g(of)-150 5396 y(the)e(exc)n(hange)f(energy)f(\(the)j Fn(r)851 5408 y Fl(s)920 5396 y Ft(=)e(0)g(curv)n(e)g(in)h(Fig.)g(1\))f(helps)2042 -83 y(to)39 b(explain)f(wh)n(y)h(the)h(exc)n(hange-only)c(or)j (Hartree-F)-7 b(o)r(c)n(k)37 b(ap-)2042 17 y(pro)n(ximation)g (underbinds)h(atoms)g(in)h(molecules,)i(o)n(v)n(erly)c(fa-)2042 116 y(v)n(ors)e(op)r(en)h(structures)g(relativ)n(e)f(to)i(close-pac)n (k)n(ed)d(ones,)k(and)2042 216 y(o)n(v)n(erestimates)23 b(barriers)g(to)i(the)g(formation)f(of)i(highly-b)r(onded)2042 315 y(transition-state)33 b(complexes.)57 b(While)36 b(LSD)f(lik)n(es)f(b)r(onds)h(to)r(o)2042 415 y(m)n(uc)n(h)k([60],)j (the)e(Hartree-F)-7 b(o)r(c)n(k)38 b(appro)n(ximation)g(lik)n(es)h (them)2042 515 y(to)r(o)27 b(little.)2125 614 y(In)38 b(Ref.)h([21],)i(w)n(e)d(tested)h(and)f(con\014rmed)g(the)h(inequalit)n (y)2042 714 y(Eq.)d(\(32\))h(for)g(sev)n(eral)e(ph)n(ysical)h(pro)r (cesses)g(including)h(atom-)2042 814 y(izations,)26 b(b)r(ond)i(stretc) n(hings,)e(and)h(transition-state)f(fragmen-)2042 913 y(tations,)39 b(using)d(Hartree-F)-7 b(o)r(c)n(k)35 b(and)i(LSD)g (densities.)65 b(In)37 b(the)2042 1013 y(presen)n(t)h(study)-7 b(,)42 b(w)n(e)d(ha)n(v)n(e)e(further)i(con\014rmed)g(this)g(inequal-) 2042 1112 y(it)n(y)34 b(for)g(atomization)g(of)g(the)h(sev)n(en)n(teen) f(molecules)g(of)g(T)-7 b(able)2042 1212 y(I.)47 b(This)31 b(table)g(also)f(sho)n(ws)g(the)i(a)n(v)n(erages)c Fh(h)p Fn(r)3508 1224 y Fl(s)3544 1212 y Fh(i)p Ft(,)k Fh(h)p Fn(s)p Fh(i)g Ft(and)f Fh(hj)p Fn(\020)6 b Fh(ji)2042 1312 y Ft(for)31 b(these)i(molecules)e(at)h(the)h(exp)r(erimen)n(tal)f (geometry)e([9,49])2042 1411 y(and)22 b(in)h(the)g(separated-atom)d (limit.)36 b(These)22 b(calculations)f(w)n(ere)2042 1511 y(made)k(self-consisten)n(tly)g(within)h(the)g(PBE)e(GGA)i(\(whose)g (cor-)2042 1611 y(relation)33 b(p)r(oten)n(tial)h(is)f(presen)n(ted)h (in)g(App)r(endix)h(A\),)f(using)g(a)2042 1710 y(Gaussian)28 b(orbital)h(basis)g(and)g(computer)g(program)e(describ)r(ed)2042 1810 y(in)20 b(App)r(endix)i(B.)e(All)h(op)r(en-shell)f(systems)g (\(including)h(the)g(sep-)2042 1910 y(arated)29 b(atoms\))h(w)n(ere)f (describ)r(ed)h(b)n(y)f(the)i(single)e(determinan)n(t)2042 2009 y(with)h(maxim)n(um)f(z-comp)r(onen)n(t)g(of)h(spin,)g(and)f(all)h (other)f(sym-)2042 2109 y(metries)e(w)n(ere)f(allo)n(w)n(ed)g(to)h (break.)35 b(The)28 b(exact)e(spin-scaling)g(of)2042 2208 y(Eq.)20 b(\(11\))h(w)n(as)f(used)i(instead)f(of)g(the)g(appro)n (ximate)f(spin)h(scaling)2042 2308 y(of)27 b(Eq.)g(\(12\).)2125 2408 y(While)34 b(the)g(c)n(hanges)f Fn(d)p Fh(h)p Fn(r)2948 2420 y Fl(s)2984 2408 y Fh(i)p Ft(,)j Fn(d)p Fh(hj)p Fn(\020)6 b Fh(ji)p Ft(,)37 b(and)d Fn(d)p Fh(h)p Fn(s)p Fh(i)g Ft(of)g(Eq.)g(\(32\))2042 2507 y(are)27 b(due)i(to)f(the)g(v)-5 b(alence)28 b(electrons,)g(the)h(a)n(v)n(erages)c Fh(h)p Fn(r)3788 2519 y Fl(s)3824 2507 y Fh(i)p Ft(,)k Fh(hj)p Fn(\020)6 b Fh(ji)p Ft(,)2042 2607 y(and)35 b Fh(h)p Fn(s)p Fh(i)i Ft(in)f(T)-7 b(able)35 b(I)h(w)n(ere)f(computed)h(for)f (all)g(electrons,)i(in-)2042 2707 y(cluding)h(the)h(cores.)67 b(As)39 b(the)g(atomic)e(n)n(um)n(b)r(er)i(Z)f(increases,)2042 2806 y Fh(h)p Fn(r)2111 2818 y Fl(s)2147 2806 y Fh(i)32 b Ft(tends)g(to)g(shrink)f(faster)g(than)h Fh(h)p Fn(s)p Fh(i)g Ft(as)f(a)h(consequence)e(of)2042 2906 y(the)i(increasing)f (e\013ect)h(of)g(the)g(core.)49 b(Th)n(us,)33 b(one)e(migh)n(t)h(w)n (an)n(t)2042 3005 y(to)37 b(remo)n(v)n(e)f(the)i(core)e(con)n (tribution,)j(as)e(in)h(pseudop)r(oten)n(tial)2042 3105 y(theory)-7 b(,)30 b(b)r(efore)h(testing)f(the)h(inequalit)n(y)f(Eq.)g (\(32\).)45 b(Ho)n(w)n(ev)n(er,)2042 3205 y(for)22 b(the)g(elemen)n(ts) g(with)h(Z)f Fh(\024)g Ft(9)g(in)g(T)-7 b(able)22 b(I,)i(w)n(e)e(ha)n (v)n(e)f(not)h(found)2042 3304 y(this)28 b(to)f(b)r(e)h(necessary)-7 b(.)2125 3404 y(In)32 b(k)n(eeping)e(with)i(our)f(analysis)f(ab)r(o)n (v)n(e,)i(the)g(selfconsisten)n(t)2042 3504 y(e\013ect)20 b(of)f(gradien)n(t)f(corrections)f(up)r(on)j(the)f(all-electron)f (densit)n(y)2042 3603 y(is)40 b(t)n(ypically)g(to)g(increase)f Fh(h)p Fn(s)p Fh(i)i Ft(and)f(reduce)f Fh(h)p Fn(r)3593 3615 y Fl(s)3630 3603 y Fh(i)h Ft(relativ)n(e)f(to)2042 3703 y(LSD.)20 b(W)-7 b(e)20 b(ha)n(v)n(e)e(found)i(this)f(to)h(b)r(e)f (the)h(case)f(for)g(all)g(the)h(systems)2042 3802 y(of)k(T)-7 b(able)25 b(I.)36 b(In)25 b(particular)e(there)i(is)f(a)h(GGA)g(core)f (con)n(traction)2042 3902 y(whic)n(h)f(helps)g(to)g(explain)g(wh)n(y)g (pseudop)r(oten)n(tials)g(constructed)2042 4002 y(for)j(LSD)g(should)g (b)r(e)h(reconstructed)e(for)h(GGA)h([23].)36 b(Analysis)2042 4101 y(of)g(X-ra)n(y)f(di\013raction)h([61])g(on)g(silicon)g(sho)n(ws)g (that)g(the)h(core)2042 4201 y(densit)n(y)27 b(is)h(more)e(realistic)h (in)h(GGA)g(than)g(in)g(LSD.)2125 4301 y(The)23 b(electron)f(densit)n (y)h(parameters)e Fn(r)3344 4313 y Fl(s)3380 4301 y Ft(,)k Fn(\020)k Ft(and)23 b Fn(s)g Ft(are)f(closely)2042 4400 y(related)g(to)g(standard)f(c)n(hemical)h(concepts.)35 b(F)-7 b(or)22 b(example,)h Fn(s)p Ft(\()p Fn(r)r Ft(\))2042 4500 y(sho)n(ws)g(the)h(shell)h(structure)e(of)h(an)g(atom,)h(rising)e (as)h(one)f(passes)2042 4599 y(out)n(w)n(ard)37 b(through)h(an)g (electronic)g(shell)g(and)g(falling)h(as)f(one)2042 4699 y(passes)32 b(out)n(w)n(ard)h(through)g(an)g(in)n(ter-shell)g(region)g ([62].)55 b(Also)2042 4799 y Fn(s)p Ft(\()p Fi(r)p Ft(\))33 b(v)-5 b(anishes)32 b(at)g(the)h(b)r(ond)g(cen)n(ter)f(of)g(a)g (molecule)g(or)g(solid.)2042 4898 y(The)19 b(c)n(hanges)g(in)h(the)g(a) n(v)n(erages)c(up)r(on)k(atomization)f(also)f(ha)n(v)n(e)h(a)2042 4998 y(c)n(hemical)h(meaning)f(whic)n(h)i(can)f(b)r(e)h(gleaned)e(from) h(T)-7 b(able)20 b(I:)34 b(W)-7 b(e)2042 5098 y(observ)n(e)32 b(that)j(4)p Fn(N)9 b(d)p Fh(h)p Fn(r)2761 5110 y Fl(s)2797 5098 y Fh(i)34 b Ft(and)h(4)p Fn(N)9 b(d)p Fh(h)p Fn(s)p Fh(i)34 b Ft(are)f(roughly)g(equal)h(to)2042 5197 y(the)g(n)n(um)n(b)r (er)f(of)g(strong)f(b)r(onds)i(brok)n(en)e(\(with)i(a)g(w)n(eak)e(b)r (ond)2042 5297 y(coun)n(ting)39 b(as)g(a)h(fraction\),)i(and)e Fn(N)9 b(d)p Fh(hj)p Fn(\020)d Fh(ji)41 b Ft(is)e(the)i(n)n(um)n(b)r (er)e(of)2042 5396 y(unpaired)d(spins)h(created)f(b)n(y)h(the)h (atomization.)64 b(Here)36 b Fn(N)46 b Ft(is)1946 5645 y(7)p eop %%Page: 8 8 8 7 bop -150 -83 a Ft(the)28 b(total)f(n)n(um)n(b)r(er)h(of)f (electrons)g(in)h(the)g(molecule.)-43 197 y Fo(I)r(I)r(I.)60 b(NUMERICAL)30 b(STUD)n(Y)e(OF)h(SEMI-LOCAL)452 289 y(APPR)n(O)n(XIMA) -7 b(TIONS)-67 506 y Ft(Generalized)47 b(gradien)n(t)g(appro)n (ximations)f(are)h(sometimes)-150 606 y(called)30 b(semi-lo)r(cal)f (appro)n(ximations.)44 b(The)30 b(form)g(of)g(the)h(righ)n(t)-150 706 y(hand)c(side)g(of)f(Eq.)h(\(3\))g(is)f(clearly)g(to)r(o)h (restricted)f(to)h(represen)n(t)-150 805 y(the)f(Hartree)e (electrostatic)g(energy)g(of)i(Eq.)e(\(2\),)i(whic)n(h)g(is)f(fully) -150 905 y(nonlo)r(cal,)38 b(but)f(Eq.)f(\(3\))g(is)h(more)e (appropriate)g(for)h(the)h(non-)-150 1004 y(in)n(teracting)f(kinetic)i (\()p Fn(T)638 1016 y Fp(S)673 1004 y Ft(\),)i(exc)n(hange)c(\()p Fn(E)1226 1016 y Fp(X)1271 1004 y Ft(\),)k(and)d(exc)n(hange-)-150 1104 y(correlation)c(\()p Fn(E)366 1116 y Fp(X)o(C)450 1104 y Ft(\))j(energies.)58 b(Here)35 b(w)n(e)g(shall)g(examine)g(just) -150 1204 y(ho)n(w)22 b(accurate)f(these)i(appro)n(ximations)d(are)i (for)g(molecules)g(and)-150 1303 y(their)28 b(atomization)e(energies.) -67 1403 y(The)36 b(kinetic)h(energy)e Fn(T)714 1415 y Fp(S)785 1403 y Ft(is)h(b)r(est)h(treated)f(exactly)f(b)n(y)h(the) -150 1503 y(Kohn-Sham)i(metho)r(d)i([1].)72 b(Its)40 b(second-order)d(gradien)n(t)h(ex-)-150 1602 y(pansion)23 b Fn(T)200 1614 y Fj(0)248 1602 y Ft(+)11 b Fn(T)373 1614 y Fj(2)433 1602 y Ft(of)23 b(Eqs.)g(\(14\))h(and)f(\(15\))h(is)g (in)g(a)f(sense)g([29])g(its)-150 1702 y(o)n(wn)c(GGA.)i(Argumen)n(ts)f ([32])f(ha)n(v)n(e)g(also)g(b)r(een)i(giv)n(en)e(for)g(a)h(con-)-150 1801 y(join)n(t)32 b(functional)h Fn(T)504 1762 y Fl(conj)492 1814 y Fp(S)641 1801 y Ft(,)h(in)e(whic)n(h)h Fn(G)p Ft(\()p Fn(\020)k Ft(=)31 b(0)p Fn(;)14 b(s)p Ft(\))32 b(of)g(Eq.)g(\(14\))-150 1901 y(is)f(replaced)f(b)n(y)g Fn(F)439 1913 y Fp(X)485 1901 y Ft(\()p Fn(\020)35 b Ft(=)28 b(0)p Fn(;)14 b(s)p Ft(\))28 b Fh(\021)g Fn(F)1005 1913 y Fp(X)o(C)1089 1901 y Ft(\()p Fn(r)1158 1913 y Fl(s)1222 1901 y Ft(=)g(0)p Fn(;)14 b(\020)35 b Ft(=)28 b(0)p Fn(;)14 b(s)p Ft(\).)46 b(W)-7 b(e)-150 2001 y(ha)n(v)n(e)18 b(not)h(found)g(m)n(uc)n(h)g(evidence)f(to)h(fa)n(v)n(or)e(one)i(c)n (hoice)f(o)n(v)n(er)f(the)-150 2100 y(other)29 b(as)g(the)h(preferred)f (GGA)h(for)f(the)h(kinetic)g(energy)-7 b(.)42 b(\(F)-7 b(or)-150 2200 y(a)30 b(n)n(umerical)g(study)g(of)h(the)f(sixth-order)f (gradien)n(t)g(expansion)-150 2300 y Fn(T)-101 2312 y Fj(0)-46 2300 y Ft(+)18 b Fn(T)86 2312 y Fj(2)141 2300 y Ft(+)g Fn(T)273 2312 y Fj(4)329 2300 y Ft(+)g Fn(T)461 2312 y Fj(6)525 2300 y Ft(in)28 b(solids,)f(see)g(Ref.)h([63].\))-73 2484 y Fr(T)-6 b(ABLE)24 b(I.)41 b(Av)n(erage)27 b(densit)n(y)g (parameters)g Fg(h)p Fq(r)1331 2492 y Ff(s)1364 2484 y Fg(i)p Fq(;)41 b Fg(h)p Fq(s)p Fg(i)p Fq(;)27 b Fr(and)g Fg(hj)p Fq(\020)5 b Fg(ji)-150 2576 y Fr(\(as)38 b(de\014ned)e(in)h (Ref.)h([21]\))h(for)f(molecules)g(at)f(the)g(exp)r(erimen)n(tal)-150 2667 y(geometry)25 b(and)g(in)g(the)g(separated-atom)g(limit,)g(as)h (calculated)g(self-)-150 2758 y(consisten)n(tly)i(within)h(the)f(PBE)h (GGA.)f(N)g(is)h(the)e(total)i(n)n(um)n(b)r(er)d(of)-150 2850 y(electrons.)p -150 2870 2043 4 v -150 2889 V 530 2970 a(molecule)533 b(atoms)-150 3061 y(System)84 b(N)117 b Fg(h)p Fq(r)417 3069 y Ff(s)450 3061 y Fg(i)148 b(h)p Fq(s)p Fg(i)140 b(hj)p Fq(\020)5 b Fg(ji)125 b(h)p Fq(r)1195 3069 y Ff(s)1228 3061 y Fg(i)147 b(h)p Fq(s)p Fg(i)141 b(hj)p Fq(\020)5 b Fg(ji)p -150 3092 V -150 3156 a Fr(H)-92 3164 y Fe(2)214 3156 y Fr(2)85 b(1.618)h(0.892)g(0.000)h(2.186)f(1.092) g(1.000)-150 3247 y(B)-96 3255 y Fe(2)176 3247 y Fr(10)f(0.688)h(0.821) g(0.166)h(0.702)f(0.851)g(0.180)-150 3339 y(LiH)237 b(4)85 b(0.995)h(0.889)g(0.000)h(1.064)f(0.928)g(0.437)-150 3430 y(CH)-37 3438 y Fe(4)176 3430 y Fr(10)f(0.777)h(0.758)g(0.000)h (0.874)f(0.862)g(0.491)-150 3521 y(NH)-34 3529 y Fe(3)176 3521 y Fr(10)f(0.663)h(0.739)g(0.000)h(0.720)f(0.813)g(0.463)-150 3613 y(OH)246 b(9)85 b(0.537)h(0.738)g(0.141)h(0.551)f(0.762)g(0.295) -150 3704 y(H)-92 3712 y Fe(2)-58 3704 y Fr(O)174 b(10)85 b(0.566)h(0.724)g(0.000)h(0.596)f(0.771)g(0.340)-150 3795 y(HF)218 b(10)85 b(0.484)h(0.710)g(0.000)h(0.496)f(0.732)g(0.212) -150 3887 y(Li)-81 3895 y Fe(2)214 3887 y Fr(6)f(0.896)h(0.891)g(0.000) h(0.908)f(0.905)g(0.242)-150 3978 y(LiF)207 b(12)85 b(0.509)h(0.733)g (0.000)h(0.522)f(0.750)g(0.158)-150 4069 y(C)-95 4077 y Fe(2)-60 4069 y Fr(H)-2 4077 y Fe(2)176 4069 y Fr(14)f(0.649)h(0.762) g(0.000)h(0.696)f(0.830)g(0.347)-150 4161 y(HCN)155 b(14)85 b(0.590)h(0.753)g(0.000)h(0.620)f(0.803)g(0.341)-150 4252 y(CO)211 b(14)85 b(0.533)h(0.743)g(0.000)h(0.550)f(0.777)g(0.249) -150 4343 y(N)-92 4351 y Fe(2)176 4343 y Fr(14)f(0.540)h(0.746)g(0.000) h(0.559)f(0.781)g(0.337)-150 4435 y(NO)208 b(15)85 b(0.516)h(0.736)g (0.080)h(0.529)f(0.765)g(0.286)-150 4526 y(O)-90 4534 y Fe(2)176 4526 y Fr(16)f(0.495)h(0.727)g(0.123)h(0.504)f(0.752)g (0.237)-150 4617 y(F)-100 4625 y Fe(2)176 4617 y Fr(18)f(0.454)h(0.711) g(0.000)h(0.457)f(0.723)g(0.138)p -150 4664 V -150 4684 V 2125 -83 a Ft(T)-7 b(ables)24 b(I)r(I)g(and)g(I)r(I)r(I)h(sho)n(w)f (our)f(n)n(umerical)g(results,)i(using)f(the)2042 17 y(PBE)40 b Fn(F)2308 29 y Fp(X)o(C)2392 17 y Ft(\()p Fn(r)2461 29 y Fl(s)2497 17 y Fn(;)14 b(\020)6 b(;)14 b(s)p Ft(\),)45 b(for)c(molecules)g(at)h(exp)r(erimen)n(tal)f(equi-) 2042 116 y(librium)36 b(geometries)f(and)h(their)g(atomization)f (energies.)62 b(All)2042 216 y(densities)28 b(ha)n(v)n(e)e(b)r(een)j (ev)-5 b(aluated)27 b(selfconsisten)n(tly)g(within)i(the)2042 315 y(Kohn-Sham)34 b(implemen)n(tation)i(of)f(the)h(PBE)e(GGA.)i (Instead)2042 415 y(of)23 b(the)h(appro)n(ximate)e(spin)i(scalings)e (of)i Fn(T)3360 427 y Fp(S)3418 415 y Ft(and)g Fn(E)3637 427 y Fp(X)3705 415 y Ft(implied)g(b)n(y)2042 515 y(Eqs.)j(\(15\))h (and)g(\(12\),)g(w)n(e)f(ha)n(v)n(e)g(used)h(the)h(exact)e(spin)h (scalings)2042 614 y(of)f(Eqs.)g(\(13\))g(and)56 b(\(11\),)27 b(as)g(usual.)2125 714 y(The)g(\\exact")e Fn(T)2645 726 y Fp(S)2706 714 y Ft(and)i Fn(E)2928 726 y Fp(X)3000 714 y Ft(of)g(T)-7 b(ables)26 b(I)r(I)h(and)g(I)r(I)r(I)g(w)n(ere)f(ev) -5 b(al-)2042 814 y(uated)39 b(from)g(the)g(o)r(ccupied)g(Kohn-Sham)g (orbitals)f(b)n(y)g(sum-)2042 913 y(ming)29 b(their)h(individual)g (kinetic)g(energies)e(and)h(b)n(y)h(ev)-5 b(aluation)2042 1013 y(of)33 b(the)h(F)-7 b(o)r(c)n(k)33 b(in)n(tegral,)h(resp)r(ectiv) n(ely)-7 b(.)53 b(The)34 b(\\exact")e Fn(E)3868 1025 y Fp(X)o(C)3985 1013 y Ft(for)2042 1112 y(eac)n(h)i(molecule)i(or)e (atom)h(w)n(as)g(found)h(b)n(y)f(starting)g(from)g(the)2042 1212 y(exact)29 b(non-relativistic)g(total)h(energy)f Fn(E)35 b Ft(and)29 b(then)i(subtract-)2042 1312 y(ing)h Fn(E)2251 1282 y Fl(P)9 b(B)s(E)2434 1312 y Fh(\000)21 b Fn(E)2586 1282 y Fl(P)9 b(B)s(E)2581 1332 y Fp(X)o(C)2746 1312 y Ft(.)53 b(The)33 b(exact)f(nonrelativistic)g(total)g(en-)2042 1411 y(ergies)g(for)h(the)h(atoms)f(w)n(ere)g(tak)n(en)g(from)g(Refs.)h ([64,65],)f(and)2042 1511 y(those)38 b(for)g(the)i(molecules)e(w)n(ere) g(found)h(from)f(those)h(for)f(the)2042 1611 y(atoms)i(b)n(y)h (subtraction)f(of)h(the)h(exp)r(erimen)n(tal)e(atomization)2042 1710 y(energies,)22 b(with)g(the)h(zero-p)r(oin)n(t)d(vibrational)h (energy)g(remo)n(v)n(ed.)2042 1810 y(F)-7 b(or)30 b(references)g(and)i (a)e(detailed)i(discussion)e(\(including)i(LSD)2042 1910 y(and)27 b(PW91)g(energies\),)f(see)i(Ref.)g([49].)2125 2009 y(There)k(ha)n(v)n(e)g(b)r(een)i(previous)e(studies)h(of)g Fn(T)3537 2021 y Fp(S)3605 2009 y Ft(for)g(molecules)2042 2109 y([66])f(and)h(its)g(c)n(hange)f(up)r(on)h(atomization)f([67],)h (but)h(w)n(e)e(ha)n(v)n(e)2042 2208 y(found)37 b(that)f(accurate)f (calculations)h(of)g Fn(T)3427 2220 y Fp(S)3498 2208 y Ft(and)h Fn(dT)3761 2220 y Fp(S)3832 2208 y Ft(require)2042 2308 y(m)n(uc)n(h)d(larger)f(basis)h(sets)h(\(App)r(endix)h(B\))f(than) f(are)g(required)2042 2408 y(for)f(accurate)f(calculations)g(of)h Fn(E)5 b Ft(,)35 b Fn(E)3256 2420 y Fp(X)3301 2408 y Ft(,)g(or)e Fn(E)3528 2420 y Fp(X)o(C)3611 2408 y Ft(.)55 b(W)-7 b(e)33 b(b)r(eliev)n(e)2042 2507 y(that)22 b(our)f(v)-5 b(alues)21 b(of)h Fn(T)2737 2519 y Fp(S)2793 2507 y Ft(ha)n(v)n(e)f(a)g (basis-set)g(error)e(of)j(0.01)e(hartree)2042 2607 y(or)26 b(less.)2119 2767 y Fr(T)-6 b(ABLE)23 b(I)r(I.)39 b(Numerical)26 b(test)g(of)h(generalized)h(gradien)n(t)e(appro)n(x-)2042 2858 y(imations)f(for)h(the)f(non-in)n(teracting)h(kinetic)f(\()p Fq(T)3462 2866 y Fp(S)3497 2858 y Fr(\),)g(exc)n(hange)h(\()p Fq(E)3989 2866 y Fp(X)4033 2858 y Fr(\),)2042 2949 y(and)19 b(exc)n(hange-correlation)i(\()p Fq(E)2979 2957 y Fp(X)o(C)3062 2949 y Fr(\))e(energies)i(of)f(molecules.)33 b(F)-6 b(or)20 b Fq(T)4028 2957 y Fp(S)4063 2949 y Fr(,)2042 3041 y(t)n(w)n(o)30 b(GGA's)h(are)f(presen)n(ted:)42 b(the)30 b(second-order)g(gradien)n(t) g(expan-)2042 3132 y(sion)24 b Fq(T)2243 3140 y Fe(0)2290 3132 y Fr(+)13 b Fq(T)2408 3140 y Fe(2)2465 3132 y Fr(and)24 b(the)f(conjoin)n(t)h(functional)g Fq(T)3449 3097 y Ff(conj)3438 3148 y Fp(S)3578 3132 y Fr(.)34 b(Exp)r(erimen)n(tal)2042 3223 y(geometries)i(and)f(selfconsisten)n(t)i(PBE)f(densities)g(ha)n(v) n(e)e(b)r(een)h(em-)2042 3315 y(plo)n(y)n(ed.)f(\(All)25 b(energies)i(in)f(hartrees.\))p 2042 3353 V 2042 3373 V 2248 3458 a Fq(T)2293 3466 y Fe(0)2345 3458 y Fr(+)17 b Fq(T)2467 3466 y Fe(2)2567 3458 y Fq(T)2623 3423 y Ff(conj)2612 3474 y Fp(S)2905 3458 y Fq(T)2950 3466 y Fp(S)3119 3458 y Fq(E)3180 3426 y Ff(P)8 b(B)r(E)3176 3471 y Fp(X)3445 3458 y Fq(E)3502 3466 y Fp(X)3663 3458 y Fq(E)3724 3426 y Ff(P)g(B)r(E)3720 3471 y Fp(X)o(C)3970 3458 y Fq(E)4027 3466 y Fp(X)o(C)p 2042 3489 V 2042 3553 a Fr(H)2100 3561 y Fe(2)2334 3553 y Fr(1.125)112 b(1.107)g(1.140)73 b(-0.648)h(-0.657)f(-0.691)g(-0.698)2042 3644 y(B)2096 3652 y Fe(2)2296 3644 y Fr(49.010)h(48.784)f(49.172)h(-7.539)g(-7.525)f (-7.795)g(-7.872)2042 3736 y(LiH)165 b(8.003)112 b(7.934)g(7.978)73 b(-2.105)h(-2.125)f(-2.188)g(-2.212)2042 3827 y(CH)2155 3835 y Fe(4)2296 3827 y Fr(40.141)h(40.050)f(40.276)h(-6.536)g(-6.576)f (-6.836)g(-6.883)2042 3918 y(NH)2158 3926 y Fe(3)2296 3918 y Fr(55.911)h(55.846)f(56.301)h(-7.634)g(-7.647)f(-7.948)g(-7.996) 2042 4009 y(OH)136 b(74.779)74 b(74.734)f(75.470)h(-8.518)g(-8.525)f (-8.797)g(-8.846)2042 4101 y(H)2100 4109 y Fe(2)2134 4101 y Fr(O)102 b(75.477)74 b(75.462)f(76.150)h(-8.917)g(-8.910)f (-9.241)g(-9.292)2042 4192 y(HF)146 b(99.242)74 b(99.300)35 b(100.137)h(-10.385)f(-10.378)g(-10.720)g(-10.779)2042 4283 y(Li)2111 4291 y Fe(2)2296 4283 y Fr(14.922)74 b(14.797)f(14.857)h (-3.508)g(-3.542)f(-3.631)g(-3.671)2042 4375 y(LiF)96 b(106.189)36 b(106.206)g(107.051)g(-11.917)f(-11.910)g(-12.293)g (-12.370)2042 4466 y(C)2097 4474 y Fe(2)2132 4466 y Fr(H)2190 4474 y Fe(2)2296 4466 y Fr(76.572)74 b(76.418)f(76.951)36 b(-10.961)f(-10.971)g(-11.391)g(-11.470)2042 4557 y(HCN)83 b(92.390)74 b(92.250)f(93.025)36 b(-12.048)f(-12.030)g(-12.488)g (-12.567)2042 4649 y(CO)100 b(112.013)36 b(111.910)g(112.897)g(-13.313) f(-13.289)g(-13.762)g(-13.847)2042 4740 y(N)2100 4748 y Fe(2)2257 4740 y Fr(108.242)h(108.115)g(109.115)g(-13.128)f(-13.094)g (-13.580)g(-13.665)2042 4831 y(NO)97 b(128.198)36 b(128.107)g(129.434)g (-14.732)f(-14.680)g(-15.222)g(-15.300)2042 4923 y(O)2102 4931 y Fe(2)2257 4923 y Fr(148.369)h(148.312)g(149.843)g(-16.358)f (-16.290)g(-16.887)g(-16.958)2042 5014 y(F)2092 5022 y Fe(2)2257 5014 y Fr(196.729)h(196.832)g(198.892)g(-19.951)f(-19.872)g (-20.564)g(-20.661)p 2042 5061 V 2042 5081 V 1946 5645 a Ft(8)p eop %%Page: 9 9 9 8 bop -67 -83 a Ft(T)-7 b(able)29 b(I)r(I)r(I)h(sho)n(ws)e(that)h (the)h(p)r(erformance)e(of)h(the)h(GGA)g(for)-150 17 y(atomization)21 b(energies)h(tends)g(to)h(impro)n(v)n(e)e(as)g(one)h (passes)g(from)-150 116 y Fn(T)-101 128 y Fp(S)-41 116 y Ft(to)k Fn(E)120 128 y Fp(X)165 116 y Ft(,)g(and)g(from)f Fn(E)629 128 y Fp(X)700 116 y Ft(to)g Fn(E)860 128 y Fp(X)o(C)944 116 y Ft(,)h(as)f(w)n(e)g(had)g(exp)r(ected:)36 b(The)-150 216 y(sum)23 b(rule)f([8,25])f(and)h(on-top)g(hole)g ([34,54,68])d(argumen)n(ts)j(pro-)-150 315 y(vide)31 b(esp)r(ecially)g(p)r(o)n(w)n(erful)f(constrain)n(ts)g(up)r(on)h(the)h (exact)f(and)-150 415 y(GGA)i(exc)n(hange-correlation)28 b(energies)j(when)h(the)g(exc)n(hange-)-150 515 y(correlation)22 b(hole)h(is)g(w)n(ell-lo)r(calized)g(around)f(its)i(electron,)g(as)f (it)-150 614 y(is)k(in)h(these)g(systems)f([49].)-67 714 y(Up)r(on)c(atomization)f(\(T)-7 b(able)24 b(I)r(I)r(I\),)g(the)g (exact)e(kinetic)i(energy)-150 814 y(b)r(ecomes)h(less)f(p)r(ositiv)n (e)h(and)g(the)h(exact)e(exc)n(hange-correlation)-150 913 y(energy)35 b(b)r(ecomes)h(less)g(negativ)n(e.)62 b(The)36 b(exact)g(exc)n(hange)f(en-)-150 1013 y(ergy)24 b(t)n(ypically)g(also)h(b)r(ecomes)f(less)h(negativ)n(e,)g(but)g(not)g (for)g(the)-150 1112 y(m)n(ultiply-b)r(onded)42 b(molecules)e(N)938 1124 y Fj(2)976 1112 y Ft(,)k(NO,)d(O)1299 1124 y Fj(2)1336 1112 y Ft(,)k(and)c(F)1633 1124 y Fj(2)1670 1112 y Ft(.)78 b(F)-7 b(or)-150 1212 y(these)40 b(molecules,)i(the)f(exact)e(exc)n (hange)f(hole)i(has)f(a)g(rather)-150 1312 y(complicated)18 b(shap)r(e)g(and)g(a)g(long)g(range)f(not)i(prop)r(erly)e(imitated)-150 1411 y(b)n(y)30 b(GGA;)h(as)f(a)g(result,)g(GGA)h(giv)n(es)e(rather)h (p)r(o)r(or)f(results)h(for)-150 1511 y Fn(dT)-58 1523 y Fp(S)5 1511 y Ft(and)f Fn(dE)272 1523 y Fp(X)317 1511 y Ft(,)g(and)f(this)g(error)f(is)h(partially)f(propagated)g(in)n(to) -150 1611 y Fn(dE)-46 1623 y Fp(X)o(C)38 1611 y Ft(.)42 b(These)30 b(are)e(the)i(molecules)f(whose)g(atomization)f(ener-)-150 1710 y(gies)18 b(b)r(ene\014t)i(the)f(most)f(from)h(exact-exc)n(hange)d (mixing)j([12{)n(16].)-73 1891 y Fr(T)-6 b(ABLE)34 b(I)r(I)r(I.)60 b(Numerical)43 b(test)h(of)h(generalized)g(gradien)n(t)f(ap-)-150 1982 y(pro)n(ximations)59 b(for)h(the)f(c)n(hanges)h(up)r(on)f (atomization)h(of)h(the)-150 2073 y(non-in)n(teracting)c(kinetic)g(\()p Fq(dT)813 2081 y Fp(S)848 2073 y Fr(\),)65 b(exc)n(hange)57 b(\()p Fq(dE)1451 2081 y Fp(X)1495 2073 y Fr(\),)65 b(and)57 b(ex-)-150 2165 y(c)n(hange-correlation)31 b(\()p Fq(dE)619 2173 y Fp(X)o(C)701 2165 y Fr(\))e(energies.)46 b(See)29 b(caption)h(of)g(T)-6 b(able)29 b(I)r(I.)-150 2256 y(\(All)d(energies)h (in)e(hartrees.\))p -150 2295 2043 4 v -150 2315 V 53 2400 a Fq(d)p Fr(\()p Fq(T)168 2408 y Fe(0)219 2400 y Fr(+)16 b Fq(T)340 2408 y Fe(2)375 2400 y Fr(\))k Fq(dT)521 2364 y Ff(conj)510 2415 y Fp(S)718 2400 y Fq(dT)803 2408 y Fp(S)907 2400 y Fq(dE)1008 2368 y Ff(P)8 b(B)r(E)1004 2413 y Fp(X)1213 2400 y Fq(dE)1310 2408 y Fp(X)1413 2400 y Fq(dE)1514 2368 y Ff(P)g(B)r(E)1510 2413 y Fp(X)o(C)1687 2400 y Fq(dE)1784 2408 y Fp(X)o(C)p -150 2430 V -150 2494 a Fr(H)-92 2502 y Fe(2)204 2494 y Fr(-0.114)46 b(-0.107)38 b(-0.149)95 b(0.044)64 b(0.042)95 b(0.075)39 b(0.083)-150 2586 y(B)-96 2594 y Fe(2)204 2586 y Fr(-0.101)46 b(-0.144)38 b(-0.137)95 b(0.092)64 b(0.019)95 b(0.123)39 b(0.114)-150 2677 y(LiH)227 b(-0.038)46 b(-0.046)38 b(-0.063)95 b(0.050)64 b(0.046)95 b(0.077)39 b(0.084)-150 2768 y(CH)-37 2776 y Fe(4)204 2768 y Fr(-0.600)46 b(-0.681)38 b(-0.622)95 b(0.312)64 b(0.298)95 b(0.445)39 b(0.445)-150 2860 y(NH)-34 2868 y Fe(3)204 2860 y Fr(-0.106)46 b(-0.204)38 b(-0.432)95 b(0.197)64 b(0.153)95 b(0.316)39 b(0.309)-150 2951 y(OH)236 b(-0.003)46 b(-0.046)38 b(-0.165)95 b(0.071)64 b(0.044)95 b(0.112)39 b(0.107)-150 3042 y(H)-92 3050 y Fe(2)-58 3042 y Fr(O)202 b(-0.195)46 b(-0.273)38 b(-0.350)95 b(0.168)64 b(0.121)95 b(0.248)39 b(0.245)-150 3134 y(HF)246 b(-0.236)46 b(-0.280)38 b(-0.221)95 b(0.112)64 b(0.079)95 b(0.152)39 b(0.150)-150 3225 y(Li)-81 3233 y Fe(2)204 3225 y Fr(-0.004)46 b(-0.021)38 b(-0.019)95 b(0.002)39 b(-0.002)94 b(0.024)39 b(0.031)-150 3316 y(LiF)235 b(-0.229)46 b(-0.297)38 b(-0.211)95 b(0.194)64 b(0.146)95 b(0.229)39 b(0.229)-150 3408 y(C)-95 3416 y Fe(2)-60 3408 y Fr(H)-2 3416 y Fe(2)204 3408 y Fr(-0.526)46 b(-0.678)38 b(-0.614)95 b(0.326)64 b(0.258)95 b(0.456)39 b(0.441)-150 3499 y(HCN)183 b(-0.080)46 b(-0.237)38 b(-0.473)95 b(0.199)64 b(0.101)95 b(0.311)39 b(0.288)-150 3590 y(CO)239 b(-0.226)46 b(-0.351)38 b(-0.414)95 b(0.153)64 b(0.066)95 b(0.225)39 b(0.209)-150 3682 y(N)-92 3690 y Fe(2)230 3682 y Fr(0.332)72 b(0.171)38 b(-0.348)95 b(0.067)39 b(-0.051)94 b(0.161)39 b(0.138)-150 3773 y(NO)262 b(0.359)72 b(0.226)38 b(-0.240)95 b(0.056)39 b(-0.066)94 b(0.135)39 b(0.104)-150 3864 y(O)-90 3872 y Fe(2)230 3864 y Fr(0.172)72 b(0.065)38 b(-0.223)95 b(0.069)39 b(-0.058)94 b(0.131)39 b(0.094)-150 3956 y(F)-100 3964 y Fe(2)230 3956 y Fr(0.273)72 b(0.209)38 b(-0.050)95 b(0.009)39 b(-0.111)94 b(0.043)39 b(0.019)p -150 4003 V -150 4023 V 2125 -83 a Ft(While)g(the)g(error)e(of)h(the)h(PBE)f(for) g Fn(E)3416 -71 y Fp(X)o(C)3538 -83 y Ft(of)g(molecules)g(is)2042 17 y(only)26 b(ab)r(out)h(0.7)e(\045,)j(it)f(w)n(ould)f(b)r(e)h(ab)r (out)f(sev)n(en)g(times)h(smaller)2042 116 y(for)h(the)g(P)n(erdew-W)-7 b(ang)27 b(1991)f([7,10,11])g(GGA.)j(Ho)n(w)n(ev)n(er,)e(the)2042 216 y(smaller)40 b(total-energy)f(error)g(of)i(the)g(more)f(complex)g (PW91)2042 315 y(do)r(es)35 b(not)g(buy)h(an)n(y)f(impro)n(v)n(emen)n (t)f([9])h(in)h(the)g(c)n(hange)e Fn(dE)4000 327 y Fp(X)o(C)2042 415 y Ft(up)r(on)h(atomization,)g(in)g(comparison)e(with)i(the)g(PBE)f (\\GGA)2042 515 y(made)27 b(simple")g(of)h(Ref.)g([9].)2603 795 y Fo(IV.)h(FINAL)g(REMARKS)2125 1013 y Ft(Densit)n(y)h(functional)h (theory)e(is)i(a)f(simpli\014cation)g(of)g(man)n(y-)2042 1112 y(particle)k(quan)n(tum)h(mec)n(hanics.)57 b(Its)35 b(appro)n(ximations)e(ough)n(t)2042 1212 y(to)21 b(b)r(e)h(and)g(are)f (deriv)-5 b(able)21 b(and)g(understandable)g(from)h(the)g(fun-)2042 1312 y(damen)n(tal)27 b(principles)g(of)h(quan)n(tum)f(mec)n(hanics.) 2125 1411 y(A)44 b(univ)n(ersal)f(functional)i Fn(E)3067 1423 y Fp(X)o(C)3150 1411 y Ft([)p Fn(n)3223 1423 y Fm(")3261 1411 y Fn(;)14 b(n)3348 1423 y Fm(#)3386 1411 y Ft(],)49 b(whic)n(h)44 b(glues)g(one)2042 1511 y(atom)33 b(to)h(another,)h (links)f(seemingly)f(div)n(erse)g(systems)g(\(suc)n(h)2042 1611 y(as)g(atoms,)h(molecules,)h(and)e(solids\))g(with)i(di\013eren)n (t)e(b)r(onding)2042 1710 y(c)n(haracters)e(\(co)n(v)-5 b(alen)n(t,)34 b(ionic,)h(metallic,)g(h)n(ydrogen,)f(and)f(v)-5 b(an)2042 1810 y(der)40 b(W)-7 b(aals\).)74 b(Just)41 b(as)e(nature)h(seamlessly)f(links)i(atoms)e(to)2042 1909 y(solids)d(via)g(clusters,)j(etc.,)g(our)d(densit)n(y)h (functional)g(descrip-)2042 2009 y(tion)h(ough)n(t)g(to)h(b)r(e)f (seamless.)69 b(Ev)n(en)38 b(the)g(uniform)h(electron)2042 2109 y(gas)29 b(is)h(almost)f(represen)n(ted)g(in)i(nature's)e(data)h (set:)42 b(The)30 b(suc-)2042 2208 y(cess)22 b(of)g(the)h(stabilized)f (jellium)h(mo)r(del)g([69])e(rea\016rms)g(that)i(the)2042 2308 y(exc)n(hange-correlation)g(energy)j(of)h(the)g(v)-5 b(alence)26 b(electrons)g(in)i(a)2042 2408 y(simple)d(metallic)g (crystal)f(lik)n(e)g(Na)h(or)f(Al)h(is)g(essen)n(tially)f(that)h(of) 2042 2507 y(a)i(uniform)h(gas.)2125 2607 y(Densit)n(y)44 b(functionals)g(illuminate)g(our)f(understanding)g(of)2042 2706 y(real)35 b(systems,)j(and)e(the)g(study)g(of)g(real)f(systems)h (can)f(re\015ect)2042 2806 y(bac)n(k)26 b(up)r(on)i(our)e (understanding)h(of)g(the)h(functionals.)36 b(W)-7 b(e)28 b(b)r(e-)2042 2906 y(liev)n(e)d(that)g(this)h(pro)r(cess)e(w)n(ould)h (w)n(ork)f(most)i(e\013ectiv)n(ely)f(if)h(cal-)2042 3005 y(culated)e(prop)r(erties)f(w)n(ere)g(routinely)h(rep)r(orted)f(at)h (sev)n(eral)f(lev-)2042 3105 y(els)33 b(of)h(densit)n(y)f(functional)g (theory)-7 b(,)35 b(including)e(the)h(LSD)g(and)2042 3205 y(non-empirical)26 b(GGA)i(lev)n(els.)2567 3485 y Fo(A)n(CKNO)n(WLEDGMENTS)2125 3703 y Ft(One)21 b(of)g(us)g(\(J.P)-7 b(.P)g(.\))21 b(thanks)f(Cyrus)h(Umrigar,)g(P)n(eter)f(F)-7 b(eib)r(el-)2042 3802 y(man,)27 b(Don)f(Hamann,)h(and)f(F)-7 b(rank)26 b(J.)h(Tipler)f(for)g(asking)g(some)2042 3902 y(of)36 b(the)g(questions)f(whic)n(h)h(this)g(article)f(attempts)h(to)g (answ)n(er,)2042 4001 y(and)30 b(Jingsong)f(He)i(for)g(helpful)g (discussions.)45 b(This)31 b(w)n(ork)e(w)n(as)2042 4101 y(supp)r(orted)38 b(in)h(part)f(b)n(y)g(the)g(National)g(Science)g(F)-7 b(oundation)2042 4201 y(under)25 b(gran)n(t)g(DMR95-21353)e(\(J.P)-7 b(.P)g(.,)25 b(K.B.,)h(and)g(M.E.\),)g(the)2042 4300 y(Deutsc)n(he)d(F)-7 b(orsc)n(h)n(ungsgemeinsc)n(haft)21 b(\(M.E.\),)k(and)e(the)h(Slo)n(v)n(e-)2042 4400 y(nian)29 b(ministry)g(of)g(science)g(and)g(tec)n(hnology)e(under)i(gran)n(t)f (J1-)2042 4500 y(8665)d(\(A.Z.\).)2283 4780 y Fo(APPENDIX)k(A:)59 b(GGA)30 b(CORRELA)-7 b(TION)2798 4871 y(POTENTIAL)2125 5089 y Ft(Selfconsisten)n(t)37 b(implemen)n(tations)h(of)g(densit)n(y)f (functionals)2042 5189 y Fn(E)2103 5201 y Fp(X)o(C)2186 5189 y Ft([)p Fn(n)2259 5201 y Fm(")2297 5189 y Fn(;)14 b(n)2384 5201 y Fm(#)2422 5189 y Ft(])20 b(t)n(ypically)f(require)g (the)i(exc)n(hange-correlation)16 b(p)r(o-)2042 5288 y(ten)n(tial)33 b(or)f(functional)i(deriv)-5 b(ativ)n(e)32 b Fn(\016)s(E)3298 5300 y Fp(X)o(C)3381 5288 y Fn(=\016)s(n)3513 5300 y Fl(\033)3558 5288 y Ft(\()p Fi(r)p Ft(\).)54 b(Complete)2042 5388 y(expressions)19 b(for)g(the)i(GGA)g(exc)n(hange)e(p)r(oten)n (tial)i(can)f(b)r(e)h(found)1946 5645 y(9)p eop %%Page: 10 10 10 9 bop -150 -83 a Ft(in)31 b(Eqs.)44 b(\(16\))30 b(and)g(\(24\))g(-)g (\(26\))h(of)f(Ref.)h([5].)45 b(Expressions)28 b(for)-150 17 y(the)41 b(GGA)f(correlation)f(p)r(oten)n(tial)h(in)g(the)h(form)f (needed)g(for)-150 116 y(PW91)22 b(or)h(PBE)f(w)n(ere)h(giv)n(en)g(in)g (Eq.)35 b(\(33\))23 b(of)h(Ref.)g([7],)g(but)g(this)-150 216 y(reference)h(is)g(not)h(widely)f(a)n(v)-5 b(ailable)24 b(and)i(a)f(term)g(that)h(b)r(elongs)-150 315 y(in)h(its)h(Eq.)36 b(\(33\))27 b(w)n(as)f(inadv)n(erten)n(tly)g(dropp)r(ed)h([70])f(from)h (that)-150 415 y(presen)n(tation.)-67 515 y(The)h(functional)f(deriv)-5 b(ativ)n(e)27 b(of)h(Eq.)f(\(3\))h(is)42 689 y Fn(\016)s(E)148 654 y Fl(GGA)143 709 y Fp(X)o(C)306 689 y Fn(=\016)s(n)438 701 y Fl(\033)482 689 y Ft(\()p Fi(r)p Ft(\))c(=)f Fn(v)740 654 y Fl(\033)o(;GGA)737 709 y Fp(X)o(C)954 689 y Ft(\([)p Fn(n)1059 701 y Fm(")1097 689 y Fn(;)14 b(n)1184 701 y Fm(#)1222 689 y Ft(];)g Fi(r)p Ft(\))609 866 y(=)729 810 y Fn(@)5 b(f)p 707 847 144 4 v 707 923 a(@)g(n)806 935 y Fl(\033)878 866 y Fh(\000)18 b(r)h(\001)1090 749 y Fk(\022)1219 810 y Fn(@)5 b(f)p 1161 847 213 4 v 1161 923 a(@)g Fh(r)p Fn(n)1329 935 y Fl(\033)1384 749 y Fk(\023)1459 866 y Fn(:)242 b Ft(\(A1\))-150 1090 y(Applying)35 b(Eq.)g(\(A1\))h(to) f(Eq.)f(\(29\))h(for)g(an)n(y)f(function)i Fn(H)7 b Ft(,)37 b(w)n(e)-150 1190 y(\014nd)28 b(the)g(GGA)g(correlation)e(p)r(oten)n (tial)-150 1402 y Fn(v)-107 1368 y Fl(\033)o(;GGA)-110 1423 y Fp(C)130 1402 y Ft(=)d Fn(")257 1414 y Fp(C)319 1402 y Fh(\000)412 1346 y Fn(r)449 1358 y Fl(s)p 412 1383 73 4 v 428 1459 a Ft(3)505 1346 y Fn(@)5 b(")593 1358 y Fp(C)p 505 1383 132 4 v 510 1459 a Fn(@)g(r)596 1471 y Fl(s)665 1402 y Fh(\000)18 b Ft(\()p Fn(\020)25 b Fh(\000)18 b Ft(sgn)o([)p Fn(\033)s Ft(]\))1182 1346 y Fn(@)5 b(")1270 1358 y Fp(C)p 1183 1383 V 1203 1459 a Fn(@)g(\020)1343 1402 y Ft(+)18 b Fn(H)130 1632 y Fh(\000)228 1576 y Fn(r)265 1588 y Fl(s)p 228 1613 73 4 v 244 1689 a Ft(3)321 1576 y Fn(@)5 b(H)p 321 1613 125 4 v 322 1689 a(@)g(r)408 1701 y Fl(s)474 1632 y Ft(+)567 1576 y Fn(r)604 1588 y Fl(s)p 567 1613 73 4 v 582 1689 a Ft(3)650 1632 y Fn(t)709 1576 y(@)758 1546 y Fj(2)795 1576 y Fn(H)p 690 1613 201 4 v 690 1689 a(@)g(r)776 1701 y Fl(s)811 1689 y Fn(@)g(t)918 1632 y Ft(+)1017 1576 y Fn(t)p 1011 1613 42 4 v 1011 1689 a Ft(6)1073 1576 y Fn(@)g(H)p 1073 1613 125 4 v 1096 1689 a(@)g(t)1226 1632 y Ft(+)1319 1576 y(7)p Fn(t)1391 1546 y Fj(3)p 1319 1613 109 4 v 1352 1689 a Ft(6)1462 1576 y Fn(@)p 1447 1613 79 4 v 1447 1689 a(@)g(t)1536 1515 y Fk(\024)1580 1632 y Fn(t)1610 1598 y Fm(\000)p Fj(1)1709 1576 y Fn(@)g(H)p 1709 1613 125 4 v 1732 1689 a(@)g(t)1843 1515 y Fk(\025)130 1865 y Fh(\000)23 b Ft(\()p Fn(\020)i Fh(\000)18 b Ft(sgn[)p Fn(\033)s Ft(]\))643 1748 y Fk(\024)697 1809 y Fn(@)5 b(H)p 697 1846 V 714 1922 a(@)g(\020)850 1865 y Fh(\000)943 1809 y Fn(\036)992 1778 y Fm(0)1016 1809 y Fn(t)p 943 1846 103 4 v 970 1922 a(\036)1066 1809 y(@)g(H)p 1066 1846 125 4 v 1089 1922 a(@)g(t)1200 1748 y Fk(\025)130 2101 y Fh(\000)243 2044 y(r)p Fn(n)19 b Fh(\001)f(r)p Fn(\020)p 228 2081 322 4 v 228 2157 a Ft(\(2)p Fn(\036k)394 2169 y Fl(s)430 2157 y Ft(\))462 2133 y Fj(2)500 2157 y Fn(n)559 1983 y Fk(\024\024)647 2101 y Fn(t)677 2066 y Fm(\000)p Fj(1)780 2044 y Fn(@)829 2014 y Fj(2)866 2044 y Fn(H)p 776 2081 170 4 v 776 2157 a(@)5 b(\020)h(@)f(t)956 1983 y Fk(\025)1018 2101 y Fh(\000)228 2277 y Fn(\036)277 2247 y Fm(0)p 228 2314 73 4 v 240 2390 a Fn(\036)311 2216 y Fk(\032)373 2333 y Ft(2)415 2216 y Fk(\024)458 2333 y Fn(t)488 2299 y Fm(\000)p Fj(1)587 2277 y Fn(@)g(H)p 587 2314 125 4 v 610 2390 a(@)g(t)722 2216 y Fk(\025)784 2333 y Ft(+)18 b Fn(t)922 2277 y(@)p 907 2314 79 4 v 907 2390 a(@)5 b(t)996 2216 y Fk(\024)1040 2333 y Fn(t)1070 2299 y Fm(\000)p Fj(1)1169 2277 y Fn(@)g(H)p 1169 2314 125 4 v 1191 2390 a(@)g(t)1303 2216 y Fk(\025\033\025)130 2569 y Fh(\000)228 2513 y(r)p Fn(n)19 b Fh(\001)f(rjr)p Fn(n)p Fh(j)p 228 2550 414 4 v 255 2626 a Ft(\(2)p Fn(\036k)421 2638 y Fl(s)457 2626 y Ft(\))489 2602 y Fj(3)527 2626 y Fn(n)577 2602 y Fj(2)676 2513 y Fn(@)p 661 2550 79 4 v 661 2626 a(@)5 b(t)750 2452 y Fk(\024)794 2569 y Fn(t)824 2535 y Fm(\000)p Fj(1)923 2513 y Fn(@)g(H)p 923 2550 125 4 v 946 2626 a(@)g(t)1057 2452 y Fk(\025)1119 2569 y Fh(\000)1295 2513 y(r)1364 2483 y Fj(2)1401 2513 y Fn(n)p 1212 2550 322 4 v 1212 2626 a Ft(\(2)p Fn(\036k)1378 2638 y Fl(s)1414 2626 y Ft(\))1446 2602 y Fj(2)1484 2626 y Fn(n)1544 2452 y Fk(\024)1588 2569 y Fn(t)1618 2535 y Fm(\000)p Fj(1)1717 2513 y Fn(@)g(H)p 1717 2550 125 4 v 1740 2626 a(@)g(t)1851 2452 y Fk(\025)1895 2569 y Fn(;)1763 2743 y Ft(\(A2\))-150 2917 y(where)24 b(sgn)o([)p Fn(\033)s Ft(])h(is)g(+1)e(for)h Fn(\033)i Ft(=)p Fh(")e Ft(and)g Fh(\000)p Ft(1)g(for)g Fn(\033)i Ft(=)p Fh(#)p Ft(.)35 b(A)n(t)25 b(the)g(n)n(u-)-150 3017 y(cleus,)i Fh(r)145 2987 y Fj(2)182 3017 y Fn(n)g Ft(div)n(erges)d(lik)n(e)j(\(2)p Fn(=r)r Ft(\))p Fn(dn=dr)r Ft(,)g(and)g(so)f(do)g(the)h(GGA)-150 3116 y(exc)n(hange)f(and)i(correlation)d(p)r(oten)n(tials.)-67 3216 y(Subroutines)-150 3316 y(whic)n(h)70 b(ev)-5 b(aluate)70 b(the)h(PBE)f(exc)n(hange-correlation)c(\\en-)-150 3415 y(ergy)55 b(densit)n(y")h(and)h(p)r(oten)n(tial)g(are)e(a)n(v)-5 b(ailable)56 b(b)n(y)g(e-mail)-150 3515 y(from)33 b(p)r (erdew@mailhost.tcs.tulane.edu)g(or)f(on)h(the)h(W)-7 b(eb)34 b(at)-150 3615 y Fa(http://www.phy.t)o(ula)o(ne)o(.e)o(du/)989 3597 y Ft(~)1025 3615 y Fa(kieron/dft.html)p Ft(.)-4 3893 y Fo(APPENDIX)c(B:)58 b(BASIS)30 b(SETS)f(AND)g(OTHER)245 3985 y(COMPUT)-7 b(A)g(TIONAL)28 b(F)-10 b(A)n(CTORS)-67 4201 y Ft(The)20 b(calculations)e(rep)r(orted)h(in)h(this)h(article)e (w)n(ere)f(done)i(with)-150 4301 y(a)32 b(mo)r(di\014ed)h(v)n(ersion)e (of)h(the)h(CADP)-7 b(A)n(C)33 b(program)d([71].)50 b(This)-150 4400 y(program)33 b(uses)i(Gaussian)g(basis)f(sets,)j(and)e(the)h(in)n (tegrations)-150 4500 y(o)n(v)n(er)c(the)j(densit)n(y)e(are)g(p)r (erformed)h(n)n(umerically)-7 b(.)55 b(The)34 b(exp)r(o-)-150 4599 y(nen)n(ts)40 b(of)g(most)f(of)h(the)g(basis)f(sets)h(in)g(the)g (CADP)-7 b(A)n(C)40 b(basis)-150 4699 y(set)f(library)f(are)g (optimized)i(for)e(Hartree-F)-7 b(o)r(c)n(k)38 b(calculations)-150 4799 y(on)21 b(atoms.)35 b(Additional)22 b(p)r(olarization)e(functions) i(are)f(added)h(to)-150 4898 y(pro)n(vide)31 b(enough)h(\015exibilit)n (y)h(for)f(calculations)g(on)g(molecules.)-150 4998 y(These)25 b(basis)g(sets)g(are)g(usually)g(con)n(tracted,)g(and)g(the)h(con)n (trac-)-150 5098 y(tion)38 b(co)r(e\016cien)n(ts)g(are)f(obtained)h (from)g(Hartree-F)-7 b(o)r(c)n(k)36 b(calcu-)-150 5197 y(lations.)73 b(In)40 b(the)g(course)f(of)g(this)h(w)n(ork)f(w)n(e)g (found)h(that,)k(at)-150 5297 y(the)27 b(lev)n(el)f(of)g(triple)g(zeta) h(plus)f(t)n(w)n(o)g(sets)g(of)g(p)r(olarization)f(func-)-150 5396 y(tions,)37 b(these)f(basis)e(sets)h(in)h(general)e(are)g (\015exible)i(enough)f(to)2042 -83 y(giv)n(e)30 b(atomization)f (energies)h(with)h(an)g(accuracy)e(of)h(the)i(order)2042 17 y(of)k(0.001)e(hartree.)61 b(Ho)n(w)n(ev)n(er,)36 b(w)n(e)g(also)f(found)h(that)g(the)h(ba-)2042 116 y(sis)24 b(sets)h(describ)r(ed)f(ab)r(o)n(v)n(e)g(are)g(often)h(not)f (appropriate)g(for)g(the)2042 216 y(accurate)32 b(calculation)h(of)h (the)g(kinetic)g(energy)-7 b(.)54 b(W)-7 b(e)34 b(found)g(it)2042 315 y(necessary)24 b(to)i(decon)n(tract)f(the)h(basis)f(sets,)i(in)f (order)f(to)h(obtain)2042 415 y(accurate)36 b(v)-5 b(alues)37 b(for)g(the)h(kinetic)f(energy)g(in)g(DFT)h(calcula-)2042 515 y(tions.)55 b(The)34 b(\014nal)f(basis)g(sets)h(used)g(in)g(this)g (w)n(ork)e(ha)n(v)n(e)h(b)r(een)2042 614 y(c)n(hec)n(k)n(ed)k(b)n(y)h (optimizing)g(the)g(geometries)f(of)h(the)h(molecules)2042 714 y(in)33 b(LSD)h(exc)n(hange-only)d(calculations)h(and)i(b)n(y)f(c)n (hec)n(king)f(the)2042 814 y(virial)d(relation)h Fn(T)2616 826 y Fp(S)2679 814 y Ft(=)d Fh(\000)p Fn(E)5 b Ft(.)45 b(In)31 b(all)f(cases)f(w)n(e)h(found)h(that)g(this)2042 913 y(relation)26 b(is)i(satis\014ed)f(with)h(an)f(error)f(of)i(0.01)e (hartree)g(or)h(less.)p 2042 1116 2043 4 v 2080 1550 a Fr([1])34 b(W.)21 b(Kohn)f(and)g(L.)h(J.)g(Sham,)f(Ph)n(ys.)h(Rev.)f Fo(140)p Fr(,)i(A1133)f(\(1965\).)2080 1641 y([2])34 b Fs(Mo)l(dern)i(Density)f(F)-6 b(unctional)35 b(The)l(ory:)50 b(A)35 b(T)-6 b(o)l(ol)34 b(for)h(Chem-)2194 1732 y(istry)p Fr(,)23 b(edited)d(b)n(y)f(J.)i(M.)f(Seminario)g(and)g(P)-6 b(.)20 b(P)n(olitzer)i(\(Elsevier,)2194 1824 y(Amsterdam,)i(1995\).) 2080 1915 y([3])34 b(J.)41 b(P)-6 b(.)40 b(P)n(erdew)h(and)e(Y.)h(W)-6 b(ang,)44 b(Ph)n(ys.)39 b(Rev.)h(B)g Fo(45)p Fr(,)k(13244)2194 2006 y(\(1992\).)2080 2098 y([4])34 b(D.)28 b(C.)h(Langreth)f(and)g(M.) g(J.)h(Mehl,)g(Ph)n(ys.)f(Rev.)f(B)h Fo(28)p Fr(,)i(1809)2194 2189 y(\(1983\).)2080 2280 y([5])k(J.)20 b(P)-6 b(.)19 b(P)n(erdew)g(and)g(Y.)g(W)-6 b(ang,)20 b(Ph)n(ys.)f(Rev.)f(B)h Fo(33)p Fr(,)i(8800)f(\(1986\).)2080 2372 y([6])34 b(A.)26 b(D.)g(Bec)n(k)n(e,)g(Ph)n(ys.)f(Rev.)g(A)g Fo(38)p Fr(,)i(3098)g (\(1988\).)2080 2463 y([7])34 b(J.)22 b(P)-6 b(.)22 b(P)n(erdew,)h(in)e Fs(Ele)l(ctr)l(onic)k(Structur)l(e)h(of)d(Solids')g(91)p Fr(,)g(edited)2194 2554 y(b)n(y)28 b(P)-6 b(.)29 b(Ziesc)n(he)h(and)e (H.)h(Esc)n(hrig)h(\(Ak)l(ademie)d(V)-6 b(erlag,)31 b(Berlin,)2194 2646 y(1991\).)2080 2737 y([8])j(J.)26 b(P)-6 b(.)25 b(P)n(erdew,)h(K.)f(Burk)n(e,)g(and)g(Y.)g(W)-6 b(ang,)25 b(Ph)n(ys.)g(Rev.)f(B)h Fo(54)p Fr(,)2194 2828 y(16533)j(\(1996\).)2080 2920 y([9])34 b(J.)f(P)-6 b(.)32 b(P)n(erdew,)i(K.)e(Burk)n(e,)h(and)e (M.)i(Ernzerhof,)h(Ph)n(ys.)e(Rev.)2194 3011 y(Lett.)26 b Fo(77)p Fr(,)h(3865)g(\(1996\);)g Fs(ibid.)e Fo(78)p Fr(,)h(1396)h(\(1997\)\(E\).)2042 3102 y([10])34 b(J.)25 b(P)-6 b(.)23 b(P)n(erdew,)i(J.)f(A.)f(Chev)l(ary)-6 b(,)23 b(S.)h(H.)f(V)-6 b(osk)n(o,)23 b(K.)h(A.)f(Jac)n(kson,)2194 3194 y(M.)g(R.)f(P)n(ederson,)i(D.)e(J.)h(Singh,)g(and)f(C.)h (Fiolhais,)i(Ph)n(ys.)d(Rev.)2194 3285 y(B)k Fo(46)p Fr(,)h(6671)g(\(1992\);)g Fs(ibid.)e Fo(48)p Fr(,)h(4978)h (\(1993\)\(E\).)2042 3376 y([11])34 b(K.)21 b(Burk)n(e,)h(J.)g(P)-6 b(.)21 b(P)n(erdew,)i(and)e(Y.)g(W)-6 b(ang,)22 b(in)f Fs(Ele)l(ctr)l(onic)j(Den-)2194 3468 y(sity)k(F)-6 b(unctional)27 b(The)l(ory:)36 b(R)l(e)l(c)l(ent)29 b(Pr)l(o)l(gr)l(ess)g(and)e(New)g (Dir)l(e)l(c-)2194 3559 y(tions)p Fr(,)e(edited)d(b)n(y)f(J.)i(F.)g (Dobson,)h(G.)f(Vignale,)h(and)e(M.)h(P)-6 b(.)23 b(Das)2194 3650 y(\(Plen)n(um,)i(NY,)g(1997\).)2042 3742 y([12])34 b(A.)26 b(D.)g(Bec)n(k)n(e,)g(J.)g(Chem.)f(Ph)n(ys.)h Fo(98)p Fr(,)g(5648)h(\(1993\).)2042 3833 y([13])34 b(M.)27 b(Ernzerhof,)g(Chem.)e(Ph)n(ys.)g(Lett.)h Fo(263)p Fr(,)h(499)f (\(1996\).)2042 3924 y([14])34 b(J.)39 b(P)-6 b(.)38 b(P)n(erdew,)k(M.)c(Ernzerhof,)k(and)37 b(K.)h(Burk)n(e,)j(J.)e(Chem.) 2194 4016 y(Ph)n(ys.)26 b Fo(105)p Fr(,)h(9982)g(\(1996\).)2042 4107 y([15])34 b(K.)25 b(Burk)n(e,)g(M.)h(Ernzerhof,)g(and)f(J.)h(P)-6 b(.)25 b(P)n(erdew,)h(Chem.)e(Ph)n(ys.)2194 4198 y(Lett.)i Fo(265)p Fr(,)h(115)g(\(1997\).)2042 4290 y([16])34 b(L.)24 b(A.)f(Curtiss,)i(K.)f(Ragha)n(v)l(ac)n(hari,)g(P)-6 b(.)23 b(C.)h(Redfern,)g(and)f(J.)h(A.)2194 4381 y(P)n(ople,)j(J.)f (Chem.)g(Ph)n(ys.)f Fo(106)p Fr(,)i(1063)g(\(1997\).)2042 4472 y([17])34 b(M.)e(Noland,)i(E.)d(L.)h(Coiti)r(~)-40 b(n)q(o,)34 b(and)d(D.)g(G.)h(T)-6 b(ruhlar,)33 b(J.)f(Ph)n(ys.)2194 4564 y(Chem.)26 b(A)f Fo(101)p Fr(,)h(1193)i(\(1997\).)2042 4655 y([18])34 b(J.)25 b(C.)f(Slater,)g Fs(The)i(Self-Consistent)h (Field)e(for)h(Mole)l(cules)g(and)2194 4746 y(Solids)g Fr(\(McGra)n(w)h(Hill,)g(NY,)e(1974\).)2042 4837 y([19])34 b(M.)43 b(Levy)d(and)h(J.)h(P)-6 b(.)42 b(P)n(erdew,)k(Ph)n(ys.)41 b(Rev.)g(B)h Fo(48)p Fr(,)k(11638)2194 4929 y(\(1993\).)2042 5020 y([20])34 b(J.)d(P)-6 b(.)29 b(P)n(erdew)h(and)f(K.)h(Burk)n(e,)g (In)n(t.)f(J.)h(Quan)n(tum)e(Chem.)58 b Fo(S)2194 5111 y(57)p Fr(,)27 b(309)g(\(1996\).)2042 5203 y([21])34 b(A.)26 b(Zupan,)f(K.)g(Burk)n(e,)g(M.)h(Ernzerhof,)h(and)e(J.)h(P)-6 b(.)25 b(P)n(erdew,)h(J.)2194 5294 y(Chem.)g(Ph)n(ys.)f Fo(106)p Fr(,)i(10184)g(\(1997\).)2042 5385 y([22])34 b(D.)24 b(C.)g(P)n(atton,)h(D.)e(V.)h(P)n(orezag,)i(and)d(M.)h(R.)f(P)n (ederson,)i(Ph)n(ys.)1926 5645 y Ft(10)p eop %%Page: 11 11 11 10 bop 3 -83 a Fr(Rev.)25 b(B)i Fo(55)p Fr(,)g(7454)h(\(1997\);)g (D.)e(C.)h(P)n(atton)g(and)f(M.)h(R.)f(P)n(eder-)3 8 y(son,)g(Ph)n(ys.)f(Rev.)h(A)f Fo(56)p Fr(,)h(R2495)h(\(1997\).)-150 100 y([23])35 b(D.)f(R.)h(Hamann,)h(Ph)n(ys.)e(Rev.)g(B)h Fo(55)p Fr(,)j(R10157)e(\(1997\),)j(and)3 191 y(references)27 b(therein.)-150 282 y([24])35 b(Y.)48 b(Zhang,)53 b(W.)c(P)n(an,)54 b(and)47 b(W.)i(Y)-6 b(ang,)53 b(J.)c(Chem.)e(Ph)n(ys.)3 374 y(\(No)n(v)n(em)n(b)r(er)23 b(1997\).)-150 465 y([25])35 b(O.)e(Gunnarsson)g(and)g(B.)h(I.)f(Lundqvist,)h(Ph)n(ys.)f(Rev.)g(B)h Fo(13)p Fr(,)3 556 y(4274)27 b(\(1976\).)-150 648 y([26])35 b(M.)20 b(Levy)g(and)f(J.)i(P)-6 b(.)20 b(P)n(erdew,)i(Ph)n(ys.)e(Rev.) g(A)f Fo(32)p Fr(,)j(2010)g(\(1985\).)-150 739 y([27])35 b(A.)23 b(G\177)-38 b(orling)25 b(and)e(M.)i(Levy)-6 b(,)23 b(Ph)n(ys.)g(Rev.)g(B)h Fo(47)p Fr(,)h(13105)h(\(1993\).)-150 830 y([28])35 b(G.)h(L.)f(Oliv)n(er)h(and)f(J.)h(P)-6 b(.)36 b(P)n(erdew,)i(Ph)n(ys.)e(Rev.)f(A)g Fo(20)p Fr(,)j(397)3 922 y(\(1979\).)-150 1013 y([29])d(J.)26 b(P)-6 b(.)26 b(P)n(erdew,)g(Ph)n(ys.)g(Lett.)g(A)f Fo(165)p Fr(,)h(79)h(\(1992\).) -150 1104 y([30])35 b(A.)25 b(D.)h(Bec)n(k)n(e,)g(In)n(t.)f(J.)h(Quan)n (tum)e(Chem.)h Fo(23)p Fr(,)h(1915)h(\(1983\).)-150 1196 y([31])35 b(J.)26 b(A.)g(Alonso)g(and)g(L.)g(A.)g(Girifalco,)j(Ph)n (ys.)d(Rev.)f(B)h Fo(17)p Fr(,)h(3735)3 1287 y(\(1978\).)-150 1378 y([32])35 b(H.)c(Lee,)j(C.)e(Lee,)i(and)e(R.)f(G.)h(P)n(arr,)i(Ph) n(ys.)e(Rev.)f(A)g Fo(44)p Fr(,)j(768)3 1469 y(\(1991\).)-150 1561 y([33])h(A.)25 b(G\177)-38 b(orling)27 b(and)f(M.)g(Levy)-6 b(,)25 b(Ph)n(ys.)g(Rev.)g(A)g Fo(50)p Fr(,)i(196)g(\(1994\).)-150 1652 y([34])35 b(K.)24 b(Burk)n(e,)h(J.)h(P)-6 b(.)25 b(P)n(erdew,)h(and)e(D.)h(C.)h(Langreth,)f(Ph)n(ys.)g(Rev.)3 1743 y(Lett.)g Fo(73)p Fr(,)i(1283)g(\(1994\).)-150 1835 y([35])35 b(M.)26 b(Levy)-6 b(,)25 b(In)n(t.)g(J.)h(Quan)n(tum)e(Chem.) 50 b Fo(S)56 b(23)p Fr(,)26 b(617)h(\(1989\).)-150 1926 y([36])35 b(S.)25 b(Iv)l(ano)n(v)g(and)g(M.)h(Levy)-6 b(,)25 b(submitted)f(to)i(J.)g(Chem.)g(Ph)n(ys.)-150 2017 y([37])35 b(C.)18 b(Fiolhais,)j(J.)d(P)-6 b(.)18 b(P)n(erdew,)i(S.)e(Q.)f(Armster,)h(J.)h(M.)f(MacLaren,)3 2109 y(and)f(M.)i(Bra)t(jczewsk)l(a,)j(Ph)n(ys.)c(Rev.)f(B)h Fo(51)p Fr(,)i(14001)g(\(1995\);)i Fs(ibid.)3 2200 y Fo(53)p Fr(,)k(13193)i(\(1996\)\(E\).)-150 2291 y([38])35 b(L.)j(P)n(ollac)n(k,)43 b(J.)38 b(P)-6 b(.)39 b(P)n(erdew,)j(J.)d(He,) i(F.)d(Nogueira,)43 b(and)38 b(C.)3 2383 y(Fiolhais,)27 b(Ph)n(ys.)f(Rev.)f(B)h Fo(55)p Fr(,)g(15544)i(\(1997\).)-150 2474 y([39])35 b(S.)25 b(Moroni,)i(D.)e(M.)h(Cep)r(erley)-6 b(,)26 b(and)f(G.)h(Senatore,)g(Ph)n(ys.)f(Rev.)3 2565 y(Lett.)g Fo(75)p Fr(,)i(689)g(\(1995\).)-150 2657 y([40])35 b(P)-6 b(.)19 b(S.)h(Sv)n(endsen)e(and)i(U.)f(v)n(on)g(Barth,)j(Ph)n (ys.)e(Rev.)f(B)h Fo(54)p Fr(,)h(17402)3 2748 y(\(1996\);)32 b(M.)d(Springer,)h(P)-6 b(.)28 b(S.)h(Sv)n(endsen,)g(and)f(U.)h(v)n(on) f(Barth,)3 2839 y Fs(ibid.)c Fr(17392.)-150 2931 y([41])35 b(D.)e(C.)h(Langreth)f(and)g(S.)g(H.)g(V)-6 b(osk)n(o,)35 b(Ph)n(ys.)e(Rev.)g(Lett.)h Fo(59)p Fr(,)3 3022 y(497)26 b(\(1987\);)i Fs(ibid.)c Fo(60)p Fr(,)j(1984)g(\(1988\).)-150 3113 y([42])35 b(M.)26 b(Rasolt)h(and)f(D.)g(J.)g(W.)g(Geldart,)h(Ph)n (ys.)f(Rev.)g(B)g Fo(34)p Fr(,)h(1325)3 3205 y(\(1986\).)-150 3296 y([43])35 b(D.)23 b(C.)g(Langreth)h(and)e(J.)i(P)-6 b(.)23 b(P)n(erdew,)i(Ph)n(ys.)e(Rev.)f(B)h Fo(21)p Fr(,)i(5469)3 3387 y(\(1980\).)-150 3479 y([44])35 b(E.)23 b(Engel)h(and)e(S.)h(H.)g (V)-6 b(osk)n(o,)24 b(Ph)n(ys.)e(Rev.)h(B)g Fo(42)p Fr(,)h(4940)h (\(1990\).)-150 3570 y([45])35 b(S.-K.)42 b(Ma)i(and)f(K.)g(A.)g(Bruec) n(kner,)48 b(Ph)n(ys.)43 b(Rev.)f Fo(165)p Fr(,)49 b(18)3 3661 y(\(1968\).)-150 3753 y([46])35 b(E.)d(H.)g(Lieb)g(and)g(S.)g (Oxford,)i(In)n(t.)d(J.)i(Quan)n(tum)d(Chem.)i Fo(19)p Fr(,)3 3844 y(427)26 b(\(1981\).)-150 3935 y([47])35 b(K.)30 b(Burk)n(e,)g(F.)h(G.)f(Cruz,)i(and)d(K.)h(C.)h(Lam,)f (submitted)e(to)j(J.)3 4027 y(Chem.)25 b(Ph)n(ys.)-150 4118 y([48])35 b(K.)25 b(C.)h(Lam,)f(F.)g(G.)h(Cruz,)g(and)f(K.)g(Burk) n(e,)h(in)f Fs(A)l(dv.)i(in)g(Quan-)3 4209 y(tum)f(Chem.)p Fr(,)f(edited)f(b)n(y)g(J.)h(M.)g(Seminario)f(\(Academic)g(Press,)3 4301 y(NY,)h(1997\).)-150 4392 y([49])35 b(M.)24 b(Ernzerhof,)h(J.)g(P) -6 b(.)24 b(P)n(erdew,)h(and)e(K.)h(Burk)n(e,)g(In)n(t.)f(J.)h(Quan-)3 4483 y(tum)g(Chem.)h Fo(64)p Fr(,)h(285)h(\(1997\).)-150 4575 y([50])35 b(J.)g(P)-6 b(.)35 b(P)n(erdew,)i(R.)e(G.)g(P)n(arr,)i (M.)e(Levy)-6 b(,)36 b(and)e(J.)i(L.)e(Balduz,)3 4666 y(Ph)n(ys.)17 b(Rev.)f(Lett.)i Fo(49)p Fr(,)h(1691)g(\(1982\);)i(J.)d (P)-6 b(.)18 b(P)n(erdew,)h(in)e Fs(Density)3 4757 y(F)-6 b(unctional)31 b(Metho)l(ds)g(in)f(Physics)p Fr(,)g(edited)e(b)n(y)g (R.M.)g(Dreizler)3 4848 y(and)d(J.)h(da)g(Pro)n(videncia)g(\(Plen)n (um,)f(NY,)g(1985\).)-150 4940 y([51])35 b(R.)25 b(Merkle,)i(A.)f(Sa)n (vin,)g(and)g(H.)f(Preuss,)i(J.)g(Chem.)f(Ph)n(ys.)g Fo(97)p Fr(,)3 5031 y(9216)h(\(1992\).)-150 5122 y([52])35 b(J.)i(P)-6 b(.)38 b(P)n(erdew)f(and)g(M.)g(Ernzerhof,)k(in)c Fs(Ele)l(ctr)l(onic)i(Density)3 5214 y(F)-6 b(unctional)25 b(The)l(ory:)35 b(R)l(e)l(c)l(ent)26 b(Pr)l(o)l(gr)l(ess)h(and)e(New)g (Dir)l(e)l(ctions)p Fr(,)3 5305 y(edited)42 b(b)n(y)f(J.)j(F.)e (Dobson,)47 b(G.)c(Vignale,)48 b(and)42 b(M.)h(P)-6 b(.)43 b(Das)3 5396 y(\(Plen)n(um,)24 b(NY,)i(1997\).)2042 -83 y([53])34 b(J.)27 b(P)-6 b(.)25 b(P)n(erdew,)i(A.)e(Sa)n(vin,)g(and)g (K.)h(Burk)n(e,)f(Ph)n(ys.)g(Rev.)g(A)g Fo(51)p Fr(,)2194 8 y(4531)j(\(1995\).)2042 100 y([54])34 b(J.)23 b(P)-6 b(.)23 b(P)n(erdew,)g(M.)g(Ernzerhof,)h(K.)e(Burk)n(e,)h(and)f(A.)g(Sa) n(vin,)h(In)n(t.)2194 191 y(J.)k(Quan)n(tum)c(Chem.)i Fo(61)p Fr(,)i(197)g(\(1997\).)2042 282 y([55])34 b(P)-6 b(.)28 b(Bagno,)h(O.)f(Jepsen,)g(and)f(O.)g(Gunnarsson,)i(Ph)n(ys.)e (Rev.)g(B)2194 374 y Fo(40)p Fr(,)g(1997)g(\(1989\).)2042 465 y([56])34 b(N.)h(Moll,)k(M.)c(Bo)r(c)n(kstedte,)j(M.)d(F)-6 b(uc)n(hs,)37 b(E.)e(P)n(ehlk)n(e,)i(and)d(M.)2194 556 y(Sc)n(he\017er,)26 b(Ph)n(ys.)g(Rev.)f(B)h Fo(52)p Fr(,)g(2550)h (\(1995\).)2042 648 y([57])34 b(D.)26 b(R.)f(Hamann,)g(Ph)n(ys.)h(Rev.) f(Lett.)h Fo(76)p Fr(,)g(660)h(\(1996\).)2042 739 y([58])34 b(R.)k(O.)f(Jones)h(and)f(G.)h(Seifert,)j(Ph)n(ys.)c(Rev.)g(Lett.)g Fo(79)p Fr(,)k(443)2194 830 y(\(1997\).)2042 922 y([59])34 b(A.)29 b(Zupan,)g(P)-6 b(.)29 b(Blaha,)h(K.)f(Sc)n(h)n(w)n(arz,)h(and) e(J.)h(P)-6 b(.)29 b(P)n(erdew,)h(un-)2194 1013 y(published.)2042 1104 y([60])k(L.)22 b(Deng,)g(T.)g(Ziegler,)h(and)e(L.)g(F)-6 b(an,)22 b(J.)g(Chem.)f(Ph)n(ys.)g Fo(99)p Fr(,)i(3823)2194 1196 y(\(1993\).)2042 1287 y([61])34 b(J.)29 b(M.)f(Zuo,)h(P)-6 b(.)27 b(Blaha,)j(and)d(K.)h(Sc)n(h)n(w)n(arz,)h(J.)f(of)h(Ph)n(ys.:)38 b(Con-)2194 1378 y(dens.)26 b(Matter)g Fo(9)p Fr(,)h(7541)g(\(1997\).) 2042 1469 y([62])34 b(A.)23 b(Zupan,)h(J.)g(P)-6 b(.)23 b(P)n(erdew,)h(K.)f(Burk)n(e,)h(and)f(M.)h(Caus\022)-38 b(a,)25 b(In)n(t.)d(J.)2194 1561 y(Quan)n(tum)i(Chem.)h Fo(61)p Fr(,)h(287)h(\(1997\).)2042 1652 y([63])34 b(Z.)21 b(Y)-6 b(an,)21 b(J.)g(P)-6 b(.)20 b(P)n(erdew,)i(T.)f(Korhonen,)h(and) e(P)-6 b(.)20 b(Ziesc)n(he,)i(Ph)n(ys.)2194 1743 y(Rev.)k(A)f Fo(55)p Fr(,)h(4601)h(\(1997\).)2042 1835 y([64])34 b(E.)19 b(R.)f(Da)n(vidson,)i(S.)e(A.)g(Hagstrom,)i(S.)e(J.)h(Chakra)n(v)n(ort) n(y)-6 b(,)19 b(V.)f(M.)2194 1926 y(Umar,)25 b(and)g(C.)h(F.)f(Fisc)n (her,)h(Ph)n(ys.)f(Rev.)g(A)g Fo(44)p Fr(,)h(7071)g(\(1991\).)2042 2017 y([65])34 b(S.)28 b(J.)g(Chakra)n(v)n(ort)n(y)-6 b(,)27 b(S.)g(R.)h(Gw)n(altney)-6 b(,)28 b(and)f(E.)h(R.)f(Da)n (vidson,)2194 2109 y(Ph)n(ys.)f(Rev.)f(A)g Fo(47)p Fr(,)i(3694)g (\(1993\).)2042 2200 y([66])34 b(A.)26 b(J.)g(Thakk)l(ar,)g(Ph)n(ys.)g (Rev.)f(A)g Fo(46)p Fr(,)h(6920)h(\(1992\).)2042 2291 y([67])34 b(J.)29 b(P)-6 b(.)29 b(P)n(erdew,)g(M.)g(Levy)-6 b(,)28 b(G.)g(S.)g(P)n(ain)n(ter,)i(S.)e(W)-6 b(ei,)29 b(and)f(J.)g(B.)2194 2383 y(Lago)n(wski,)g(Ph)n(ys.)e(Rev.)f(B)h Fo(37)p Fr(,)g(838)h(\(1988\).)2042 2474 y([68])34 b(K.)d(Burk)n(e,)h (J.)g(P)-6 b(.)31 b(P)n(erdew,)i(and)e(M.)g(Ernzerhof,)i(in)e(prepara-) 2194 2565 y(tion.)2042 2657 y([69])j(J.)c(P)-6 b(.)28 b(P)n(erdew,)j(H.)d(Q.)h(T)-6 b(ran,)29 b(and)f(E.)i(D.)e(Smith,)g(Ph)n (ys.)h(Rev.)2194 2748 y(B)d Fo(42)p Fr(,)h(11627)g(\(1990\).)2042 2839 y([70])34 b(P)-6 b(.)26 b(S\177)-38 b(oderlind,)26 b(priv)l(ate)f(comm)n(unication.)2042 2931 y([71])34 b(CADP)-6 b(A)n(C6:)31 b(The)17 b(Cam)n(bridge)g(Analytical)h(Deriv)l (ativ)n(es)f(P)n(ac)n(k-)2194 3022 y(age)54 b(Issue)e(6.0)h(Cam)n (bridge)g(\(1995\).)h(A)e(suite)g(for)h(quan-)2194 3113 y(tum)47 b(c)n(hemistry)g(programs)h(dev)n(elop)r(ed)f(b)n(y)g(R.)h(D.) g(Amos,)2194 3205 y(with)40 b(con)n(tributions)f(from)g(I.)g(L.)g(Alb)r (erts,)k(J.)d(S.)f(Andrews,)2194 3296 y(S.)21 b(M.)g(Colw)n(ell,)j(N.)c (C.)h(Handy)-6 b(,)20 b(D.)h(Ja)n(y)n(atilak)l(a,)h(P)-6 b(.)21 b(J.)g(Kno)n(wles,)2194 3387 y(R.)32 b(Koba)n(y)n(ashi,)h(G.)f (J.)g(Laming,)h(A.)e(M.)i(Lee,)g(P)-6 b(.)32 b(E.)g(Maslen,)2194 3479 y(C.)58 b(W.)g(Murra)n(y)-6 b(,)64 b(P)-6 b(.)57 b(P)n(almieri,)66 b(J.)58 b(E.)g(Rice,)65 b(J.)58 b(Sanz,)2194 3570 y(E.)21 b(D.)e(Simandiras,)i(A.)e(J.)i(Stone,)g(M.-D.)e(Su,)i(and) e(D.)h(J.)g(T)-6 b(ozer.)1926 5645 y Ft(11)p eop %%Trailer end userdict /end-hook known{end-hook}if %%EOF